A VISUAL META-LANGUAGE FOR
GENERIC MODELING

THESIS

Hakan Canli, 1% Lieutenant, TUAF

AFIT/GCE/ENG/02M-1

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF

TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Report Documentation Page

Report Date Report Type Dates Covered (from... to)
10 Mar 02 Final Mar 2001 - Mar 2002
Title and Subtitle Contract Number

A Visua Meta-L anguage for Generic Modeling
Grant Number

Program Element Number

Author (s) Project Number

1st Lt Hakan Canli, TUAF
Task Number

Work Unit Number

Performing Or ganization Name(s) and Performing Organization Report Number
Address(es) AFIT/GCE/ENG/02M-1

Air Force Ingtitute of Technology Graduate School
of Engineering and Management (AFIT/EN) 2950 P
Street, Bldg 640 WPAFB OH 45433-7765

Sponsoring/Monitoring Agency Name(s) and Sponsor/Monitor’s Acronym(s)
Address(es)

AFRL/SNZW ATTN: Mike Foster Bldg 630

S1D34, 2241 Avionics Circle WPAFB OH Sponsor/Monitor’s Report Number (s)
45433-7303

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Abstract

This research examines the usefulness of a visual meta-language (VLGM Visual Language for Generic
Modeling) developed for the specification of components and relations in a modeling domain. The
language is designed to allow software tools to interpret specifications and automatically provide
modeling environments. VLGM makes use of the object-orientated software engineering methodology. It
defines four types of special classes and three types of relations between them. Data types and primitive
types are alocated with several attributes to provide restrictions and enable consistency checks over
models. As part of this research a software tool was designed. The tool provides aworkspace for creating
VLGM specifications. It interprets VLGM designs and provides a generic modeling environment. An
XML document format is used as a persistence mechanism to promote reusability and sharing. Four case
studies from different modeling domains are used to explore the applicability of the idea.

Subject Terms
VLGM, Visua Languages, Modeling, Object-Orientation, Simulation, UML, XML Document

Report Classification Classification of thispage
unclassified unclassified

Classification of Abstract Limitation of Abstract
unclassified uu

Number of Pages
186

The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the United States Air Force, Department of Defense, or the U. S. Government.

AFIT/GCE/ENG/02M-1

A VISUAL META-LANGUAGE FOR

GENERIC MODELING

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Hakan Canli, B.S.

1% Lieutenant, TUAF

March 2002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/02M-1

A VISUAL META-LANGUAGE FOR

GENERIC MODELING

Hakan Canli, B.S.
1% Lieutenant, TUAF

Approved:
W & AMAL 92
Karl S. Mathias, Major, USAF date
Chairman
AT / § Mano2
Timothy M. Jacobs, Lieufenant Colonel, USAF date
Member

Raym®nd R. Hill, LieutenantColonel, USAF date
Member

Acknowledgments
"I find that the harder I work, the more luck I seem to have."
Thomas Jefferson (1743-1826)
I owe much appreciation to those who have contributed to the achievement of my
work at AFIT. | thank Major Karl Mathias for his expert guidance, understanding, amazing
enthusiasm and curiosity about “How are the boxes doing?” Without his support, my
academic journey at AFIT would not have been as regarding. | also thank my committee
members, Lieutenant Colonel Tim Jacobs and Lieutenant Colonel Raymond Hill for their
constructive comments. Special thanks to Dr. Henry Potoczny for reminding me of the joy of
learning with his open mind and unique sense of humor.
Above all, my wife deserves the greatest praise for her patience and selflessness
during her pregnancy while we worked through the AFIT experience. Her dedication and love
made our son and my career possible. | dedicate this work to my wife and my son, whose

little smile always managed to remind me what the important things are in life.

1.

2.

Table Of Contents

ACKNOWIBAGMENTS ...t v
Table OF CONENTS ..ottt r s vi
LISt OF FIQUIES ..ttt et et e e et e e s e e b e e sreeennee s Xii
LISE OF TaDIES ...t XVi
AADSTIACT. ... Xvii
INTRODUCTION ..ottt sttt 1
IO O = 7 ot 2o [(01U g Lo PSRRI 2
1.2, Problem DESCHIPLIONcoiuiiiiiiiie ittt 3
1.3, RESEAICN FOCUS ...ttt nb e 4
1.3.1. ODJECTIVES ...ttt ettt ettt e nb e ere e e e 4
1.3.2. APPIOACK. ...ttt 5
1,303, SCOPE ..ttt 6
1.4, Structure Of the TRESIS ...c.iiiiiii e 6
LITERATURE REVIEW ..ottt 7
2.1 SIMUIBLION .ot 7
2.1.1. The SIMUIBTION PrOCESSc..eiiiiieiieitie ittt ettt 7
2.1.2. Multi-domain SIMUIALION.ccciiiiiiiiie e 10
2.2. Modeling and Object Orientationcceeiiieiiieiiie e 13
5 T Y, (oo =1 1T oo USSP 13
2.2.2. The Object-Oriented Paradigmccceiiiieiiiieiiie e 14
2.2.3. Object-Oriented Modeling Approaches and UML...........c..cccoeeviiveivie e 17
2.2.4. Modeling — The Big PICIUIE.........ccveiiiiiie e 19

vi

2.3, Facets Of MOGEIINGooiiiiiiiie e 20

2.3. L. ADSEIACTION ...ttt 20
2.3.2. REIALIONS ... 22
2.3.3. Spectrum of Dynamic Systems and MOGEISccooviiiiiiniiiiieie e 28
2.3.4. Behavioral MOEIScoouiiiiiiiie e 30
2.4, Information ViSUBHZALIONcoviviiiiiiiiie e 38
2.4.1. The Human Perception SYSIEMcoiiiiiiiiiiiii et 38
2.4.2. Benefits of Visualization TEChNIQUES............coveeiiieiiiie e 39
2.5, Visual Language TREOIYciiiieeiiie ittt et sra e sraee s 40
2.5.1. Specification of Visual LanguageS..........cccvriirieiiieeiiee e 40
2.5.2. Human Computer Interaction Framework.............ccccovviiiiiiiiiiiiiiniie e 41
2.5.3. Representation FrameWOrKcouieiiiiiiiiiiie e 44
2.5.4. Example Applications of Visual Languages.........c.ccorureuiereinneiieeniie e 45
2.6. Principles for Visual Language DeSigncccooveiiiiiieiiieiie e 49
2.6.1. Critical Tasks of Modeling Languages..........c.coveeiieriiniieiienie e 49
2.6.2. DeSIgN PriNCIPIES.oiiiiie ettt 50
2.7, EVAlUALION CIItEIIA . .ueiviieieiiiie it 53
2.8. Literature REVIEW SUMIMANYcooiuiiiiiieiiiieeeitie et e e e et e e sae s aeesrae e nree e 56
METHODOLOGY ...ttt ettt et e e erte e e et e e e s sntee e e e nteae e s nneeeas 58
3.1. Motivations to Develop a Visual OO Modeling Language For Modeling 58
3.2. Drawbacks of UML for OO Simulation Modeling..........cccccovvveiiieiiieiiiie e 58
3.2.1. Scenario Construction Scalabilitycccoviiiiiiiii e 58
3.2.2. Problems With Behavioral Diagrams and Code Generation in UML................... 59
3.2.3. ConSiStENCY PrODIEMSeiiiiiiciii e 60
3.3. Design Objectives for the Visual Language for Generic Modelingccc.cccve.. 60

vii

3.3.1. General Modeling Pattern...........ccveiiiieiii e 61

3.3.2. Critical Tasks and IMpliCAtIONS.cooiiiieiieiie e 62
3.3.3. DESIGN PIINCIPIES. ...ttt 63
3.4. Assumption on Behavioral DeSCIIPLIONcc.eoiieiiiiiiiiieiie e 65
3.5. Translation of Scenarios for Simulation TOOIccceiiiiiiiiiiie e 65
3.6, SUCCESS CIILEIIA ..vveutiiieiie ettt sttt 66
3.7. Methodology SUMMEIYcoiiiieiiei ettt st e et e et a e e ree e srae e 67
4. FRAMEWORK AND LANGUAGE DEFINITIONcccooiiiiiiiiiiiieeeeeees 68
A1 FTAMEBWOTK. .. ittt etttk 68
4.2. Visual Meta-Language for Generic Modeling (VLGM)........cccccoiveiiiieiiie i 71
4,21, PIIMITIVES ...ttt ettt et s e et e ne e 71
4.2.1.1. NUMEIIC TYPES ...tiiiieiiiieeiiee ettt sttt ettt n e sbe e ne s 72
4.2.1.2. BOOIEAN TYPE ..cutiiiiiiiiieit ettt ettt 73
4.2.1.3. CRAl TYPE oottt ettt ettt n e 73
4,214, SHING TYPE oottt ettt bbb 73
N R T A 1 |1 TP RURRI 73
4.2.2. Complex Data StFUCIUIES........cciieeiiie ettt e 74
A T B - L - Nl Y/ o TP 74
B.2.2.2. PO TYPE oottt ettt 74
4.2.2.3. REIAION TYPB ..ottt 75
4.2.2.4, COMPONENE TYPC .uriiiiieii ittt ie ettt e e e s e e e st ae e e s 76
4.2.3. REIALIONS ... 78
4.2.3.1. TYPE EXIENSION......ciiiiiiiiieieiie e ciee ettt s erae e e 78
4.2.3.2. COMPOSITIONeiiiiiiiii ettt et e e s ae e e sre e e s e e 79
4.2.3.3. POrt Type SEIECHIONcociiieciee e 80

viii

4.2.4. Accessibility Through The Type Hierarchyccccooeiiiiiiiiiiiinecee 81

4.2.5. CaSe DEFINITIONSeoiiiiiiiiiiie e 82
4.3, SCENArio ENVIFONMENT......oiiiiiiiiiie it 83
4.3.1. Generic Component REPreSENtation.cooueiueeiririieiie e 83
4.3.2. Consistency Checking and Graphical Constraining...........c.cccocvevieiiieiieniesninne 84
4.3.3. Scenario Environment Scalability............cccocoeiiiiiiii i 84
T 1 1] 1 0T YOS PRSP 84
5. IMPLEMENTATION ...ooiiiitiiie ittt 86
5.1, Design ArChITECIUIEc.vvi it et ae e e e araee s 86
TN S = Tod Vo T OSSP OTRS PP 86
5.1.1.1. The Parser PACKAJEcccuieiiiiiiiiiiiieie ettt 87
5.1.1.2. The EIements PACKAGEcocvviiieiiiiiiiii e 91
5.1.1.3. The GUI PACKAGEocuieiiiiieiiieiie e 95
5.1.20 XML FOIMAL ...t 97
5.1.3. Values in COMPIEX SIUCTUIES.........oiiviiiiiiiiiie et 99
5.2. The Application User INterfaceccccovveiiieiiiie e 100
5.2.1. VLGM DESIGN....eiuiiiiiiiiiteieie sttt bttt 100
5.2.2. SCENAMIO DBSIGN ..icvviiiiiie ettt te e erae e 101
6. LANGUAGE EVALUATION WITH CASE STUDIES..........cccco e 104
6.1, DIQItal CIFCUITIY ...cueiieieiiieee et 104
6.1.1. VLGM Library DIiagramsccccocueeiiieeiieciieeesieeesieeesneeesee s saae e e sreaesnnnes 104
6.1.2. SCENAMIO DBSIGN ..icvviiiiiie it e e e ae e e erae e 107
B.1.3. RESUILS ...t 110
6.2, NEIWOIKING ...oeiiiie ettt e et e e st e e st e e abee e e nre e e aree e 111
6.2.1. VLGM Library DIiagramsccccocueiiiieeiieciieeesieeeiieesreeesve e saee e e sneaesnnee s 112

6.2.2. SCENAIO DESION ...ttt 114

6.2.3. RESUILS ...t 115
6.3, SENSITIVILY ANAIYSIS .. .ooiiiiiiiie e 116
6.3.1. VLGM Library DI&QramsScccueiuiaiiieiiieiieaieeie e 117
6.3.2. SCENAITO DESION ...ttt 117
6.3.3. Interpretation 0f SCENAIIOcc.coiviiiiiii e 118
6.3.4. Sensitivity Analysis Methodccooviiiiiiiiii e 118
6.3.5. IMPIEMENTALIONccvviiiiiie e 120
B.3.6. RESUILS ...t 122
6.4, MISSION PlaNNiNGcooiviiiiiiiiiec e 123
6.4.1. VLGM Library DIaQramsScccueiuiaiiieitieiieaieeeie e 124
6.4.2. SCENAIO DESION ...eviieieiieiie ettt 125
B.4.3. RESUILS ...t 126
6.5. SUMMAry Of Case STUAIESc.eeiuiiiieiiieiee e 126
CONCLUSIONS......ceie ettt te et saesee st e nee e 127
7.1 EVAIUBLION. ...ttt 127
7. 1.1, EXPIESSIVENESS ...eeeiuiiieiiieeiie e ette ettt e it et e st e e st e et e et e e e nee e s taeessaeesnbeeesnneens 127
7.1.2. FrequenCY OF BITOIScuviiieie ettt et aa e 127
7.1.3. REAUNGANCY....cutiiiiiiie ettt ettt a et e e ie e 128
7.1.4. Locality OF CNANGEcoiiiiieiii e 128
7.1.5. REUSADIIILY ..oooiiiiice e 128
7.0.6. REHADIITY.....coveieiieiiece e 128
7017, Translatabilityccvviiiie e 129
7.1.8. CompatiDilityooooiiiie e 129
7.2, FULUIE SEUAY ..ottt et e e et e e anae e e nteeenneeeas 130

7230 SUIMMATY ettt ettt e e e e e s e et e e n e e an e e e ane e e nnre e 131

BIBLIOGRAPHY .ttt e e et e et e e ente e e e enneeas 132
APPENDIX A. XML TAGS AND ATTRIBUTES OF THE FILE FORMATc........... 136
APPENDIX B. SCREEN SHOTS ...ttt 140
APPENDIX C. XML DOCUMENTS OF CASE STUDIES........cccooiiiiee e, 143
Section 1: Digital CIrCUITIYooiiiiiiiei e e e 143
a) Random LogiC EIEMENTS..........ccouiiiiiieiii e 143

D) BUS SITUCKTUIES. ...ttt sttt e e srae e e eneaeanaeeas 144

(o) B (01U (- TP PR TP PPROPRRPN 146

) TWO-BIL AUAEN ... e 147

€) FOUI-BIt AGUEN ... 150

f) L6-BIt AGUCT ...t 150

0) 16-BIit FUIl AQUEN ... 152
SECHION 22 NELWOIK ...ttt ettt ee s 156
2) QUEUE EIBMENTS. ...t 156

D) NOAE MOEL........ooieeee e e 159

C) HUD MOUEL ... et 159

d) Network of Air FOrCe BaSES.........cccuviiiieeiiieeiiee ettt 160
Section 3: SENSITIVILY ANAIYSIS........oiiiiiiiie e 161
a) DecCisSion Tree EIEMENTS........ccooiiiiiiiiieiee e 161

D) BESt Car SAMPIEcevviiiiie e e 161
Section 4: MiSSION PIANNINGcocvviiiieiiie e nre et 163
) MISSION EIEMENTSoviiiiiii e 163

D) SAMPIE MISSION ... 166
[Vt ST PRPTURRPRPRN 168

Xi

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.

List Of Figures

PLUGE&SIM INEEITACEeeiieiiieeiee et 11
UMVL ODbject REPreSENtationcocuiiieiiiiieiiieiie sttt 15
UML Class REPreSENtationccocuvieiiiieiiieeiiec e s e esire e svee e srae e srae e srne e 15
UML Association Relationshipcccoovviiiieiiiicciie e 15
UML Aggregation and Composition Relationships ..o 16
UML Inheritance RelationShipcccoovviiiiii i 16
EXpressing CardiNalities............coveiiiieiiie e 23
REIAtioNS 8S ODJECEScc.viiiieiiiiiiee e 23
Allowed and CUITENT TYPES ...eeiuiiiiie ettt 26
Standard Part HIEIarChYoouoiiiiiiiiieiie e 27
Part Hierarchy with Relations as Parts............cccoveiieiiiiiieiiesie e 27
Aggregate Relation Between Relationsccooiiiieiiiiiiiicenie e 28
UML Collaboration Diagram at the Specification Level...........c..ccccooviiinennn. 32
UML Collaboration Diagram at the Instance Levelccccoooeeiiiiiieiieennen. 32
UML Statechart DIagramcccveiiiieiiie et 33
UML ACHIVITY DIGIAMcoiviiiiiiiiieitieieee ettt 34
UML Action-Object Flow Relationshipscccoiiiiiiiiiiiiciie e 35
ODbjeCt-Oriented SEALEScvveeiiieiiie st e et sae e erree s 37
Formalization of Feature States using OO StatesS..........ccoceevveeiiieeiiiee e 37
HCT FTaMEBWOIK ...ttt 43
Representation FrameWOrK..........cc.coiviiiiiiiiie e 44
L0 1@ O3 €] =101 1 o= T SO U 46

Xii

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.

Figure 47.

QOC Example - Presentation Preparation.............ccoceiveeieeieenieenie s 46
QOC Example - Network Browser User Interface Designcccccoeevvenveineennn. 47
QOC SOftWAre SCIEENSNOL......ccu veeiiiieeciieeetie et e st e e e e e e e e eeenreeeeeeeans 48
SIMUIAtioN MOAEIING. ..o s 62
VLGM Data TYPESeeeiiieeiiee ittt 69
VLGM REIALIONS.cviiiiiiieee et 70
D1 R 1Y L O PEURR SR 74
PO Ty .t 75
POIt SYMDOIS.eiieieecee et 75
REIALION TYPE ot e st s 76
ATITOW AN LINE TYPES vttt 76
COMPONENT TYPE...ciiieiee ettt nnee 77
TYPE EXIENSION ...ttt 78
COMPOSTEION ..ttt ettt nn e e 80
POt TYPE SEIBCTION......eiiiiiiie e 80
Accessibility Through Type Hierarchycccoovieiiii i 81
Case DEfINITIONS.cuiiiii i 83
Generic Component RepreSentationccvuveiiieeiiiee e 83
PACKAGES ...ttt ettt 87
Class Diagram of Primitive TYPES.......cooiiiiiiiiiiiie et 88
Class Diagram of COMPIEX TYPESeeeiuieeiiieiiiieeiie et e et e e srre e srae e eree e 89
Class Diagram of Library Management...........ccccoovveiiieeiiiesiie e 90
Class Diagram of Design LayOULSccocueeiiiiiiiee e 91
Class Diagram of Visualized DeSIgnccccviiiiiiieiiiie e 92
Class Diagram Of NOGES.cccviiiiieeiie e 93

Xiii

Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.

Figure 72.

Class Diagram Of REIAtIONScooviiiieiieiie e 94
Class Diagram of Main Design AT€acccueiuieriiiieiiieiiee e 95
Class Diagram of GUI EIEMENTSc.oeiuiiiiiiiieie e 96
ACCESSING DESIGN ATCAS..... ettt 100
VLGM DESIGN ATA....ueiiiieiiie ettt sttt ettt se et sb e nnne s 101
SCENATIO DESIGN ATCA......cciiiiiiiie ettt e s ae et e e aa e sraeeas 102
Component and Relation Short-Cut MenU...........cccocvveviiie e 102
CONSISTENCY REPOIvviiiiiiie ettt et be e e srae e 103
LOQIC EIBMENLS ...t 105
BUS STIUCTUIES ...t 106
SIGNAL GENEIALOTS.ot 106
TWO-BIT AGGRT ...t 108
FOUI-BIt AQGRY ...ttt 108
16-BIt AGUET ... 109
16-Bit Adder with Bus CONNECLIONSceeiuieiiiiiecieeie e 109
16-BIt FUH AGUET ... 110
Notation for Inter-library Relation Diagrams..........cc.cccccveeiiiveiiie i, 111
Queue Elements Library.........ccoovooiviiiie i 113
NOUE IMOTEL ... 114
HUD MOGEL ... s 114
AF NetWork MOoiiiiiiiei e 115
DeCiSion Tree EIBMENTSooviiiiii e 116

DECISION TrEE FOIr BESE Carvueivrieirieiiiieieeeieeseteeeee et ee et e e e eeeeeeeeeeeeteeereeeeeeeeees 117
Best Car Model with Adjusted Visualization..............ccccccovviiiiieeiiec e, 118

Adjusted Component Short-Cut MENUcocuvveiiieeiie e 121

Xiv

Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.

Figure 85.

Proportional Values for SibINGSc.cooiiiiiiiii e 121
Alternative Attribute Evaluation............cccoiiiiiiiiiice e 122
Sensitivity ANalySiS Graph.........cccoieiiiiiiiiie e 122
Attribute Value VisSiDIlItyoooiiiiiii e 123
Mission PIanning LIDIAIYc.c.ooiiiioiiiiiii e 124
IMISSION SCENAITO......ccvviiieeiie ettt 125
Primitive PrOPEITIESvviiiie ettt 140
Composition CardiNalityccccveiiiiiiiie e 140
Setting ComMPONENt IMAGEcvviiiire et nre e 141
Relation Type PrOPertieS.......c..ociiviiiii ettt 141
Component POP-UP MENU........ooiiiiiiiieiiie et 142
MAPPING POTTS. ...ttt 142
MapPING ALIIDULES ..o e 142

XV

List Of Tables

Table 1. MOdeliCa VS. VLGMcooiiiiiiiiiiie et 12
Table 2. Origing OF UIMLccuoiiiiii ettt 18
Table 3. Modeling ADSITACLION.oiiiii i 21
Table 4. Characterization of Behavioral Models..............ccoooiiiiiiiiiiiiie 31
Table 5. Taxonomy for Visual Language ReSearchccoceeiee i 43
Table 6. PrimMiItIVE TYPES . .iciuiieiiie ettt ettt st e e et et e e st e e e stae e s neeans 71
TaDIE 7. NUMEIIC TYPES .uiteitiie ettt ettt et e e st e e e e s be e e ae e e st aeentaeesaeeans 72
Table 8. Consistency Checks and CONSLraINTSccuieiieiiriiiiiieee e 84
Table 9. Sample XML DOCUMENL..........oiuiiiiiiieiii it 98
Table 10. Set NOtation for PArameters.c.covieiiriieiiieie e 99
Table 11. Two-Bit Adder Truth Table and FOrmulas............ccccooiiiiiiiiiicee e 107
Table 12. Attribute Global WeIGNTS.........c.coiiiiiieie e 119
Table 13. Alternative Attribute EVAIUALIONSccooiiiiiiiiiciecic s 119

XVi

AFIT/GCE/ENG/02M-01

Abstract

This research examines the usefulness of a visual meta-language (VLGM - Visual
Language for Generic Modeling) developed for the specification of components and relations
in a modeling domain. The language is designed to allow software tools to interpret
specifications and automatically provide modeling environments.

VLGM makes use of the object-orientated software engineering methodology. It
defines four types of special classes and three types of relations between them. Data types and
primitive types are allocated with several attributes to provide restrictions and enable
consistency checks over models.

As part of this research a software tool was designed. The tool provides a workspace
for creating VLGM specifications. It interprets VLGM designs and provides a generic
modeling environment. An XML document format is used as a persistence mechanism to
promote reusability and sharing. Four case studies from different modeling domains are used

to explore the applicability of the idea.

XVii

A VISUAL META-LANGUAGE FOR

GENERIC MODELING

1. INTRODUCTION

Simulation systems serve decision-makers as support mechanisms by testing the
anticipated behavior and performance of real-life entities, concepts, or systems on models
developed in suitable controlled mediums, and lead to reliable and more complete risk
management. It is a process of capturing the state and dynamics of the system into a model,
and deriving results and ideas by means of executing operations on the model.

Simulation is widely used for industrial, scientific, economic, educational, and military
purposes since it provides cost-effective ways to test, train, and design. As the costs of these
activities get higher and more companies count on simulation results, more is expected from
the process. These expectations focus on how accurately and how quickly it can provide
results.

The modeling aspect of the simulation process requires a series of communications
between the analyst and computer. The way this communication occurs heavily depends on
the simulation tool used and can be more efficient with the use of visual languages instead of
textual ones. Visual languages not only provide parallel interpretation of model elements and
their dependencies, but also grouping mechanisms to ease management of large-scale
projects. On the other hand, it’s difficult to trace, search and debug through the model
elements and handle large-scale projects with a textual language. If designed properly, visual
languages can also be used to communicate models between analysts. To make use of these
advantages, this research effort focuses on the usage of visual languages to support modeling

and communication of simulation entities.

1.1. Background

Modeling is the process of capturing the important aspects of real world entities. Once
a model is built, computations can be derived. For instance, “shape” is the property captured
in a proportionally-scaled small-wing model to test and explore its aerodynamic properties in
a wind tunnel, which provides an easier, cheaper and safer environment than building and
testing a full size aircraft.

The models used in computer simulations are data structures defined in the simulation
language used. Scenario design patterns for simulations depend on the simulation tool used.
Some simulation tools may require structured text definitions, others may help the user to
select basic pre-built structures and set their initial properties in a graphical environment. In
both cases, the data structures are interpreted by the simulation tool prior to execution.

Considering today’s computational capabilities of computers, many simulations run in
a reasonable time. However, this is not the case for the modeling required to prepare scenarios
for them. In most cases, the bottleneck of the simulation process occurs in modeling since it
requires detailed preparation of the data structures representing real world entities and their
behaviors.

The solution to similar problems in software engineering has been to use visual
modeling languages. The Unified Modeling Language (UML) has been proposed as a
standard modeling language for object-oriented systems. UML is based on a unification of
different object-oriented software development approaches developed in the last decade. It
most directly unifies the methods of Booch, Rumbaugh and Jacobson [FOW99]. Although
UML provides a unified modeling method for object-oriented systems, it is designed to
support software engineering tasks and not suitable to meet specific requirements of

simulation modeling. Reasons supporting this assertion are presented later in Chapter Three.

Object-orientation is an approach to problem-solving which seeks to identify the
relevant objects in the problem domain. These objects are then defined and employed to solve
the problem. It is a relatively recent paradigm, which provides a closer match to real-world
entities and provides modularity by decomposing the problem into components called objects.
Object-orientation makes reuse much more attainable and can greatly reduce complexity by
reducing coupling. The object-oriented paradigm is becoming widely used in simulation tools

to make use of its advantages.

1.2. Problem Description

Software vendors offer various kinds of tools providing environments to develop
models and run simulations for different domains. These environments may be textual, visual,
or mixed. Although textual languages provide more flexibility to the designer, it may be very
challenging to textually define and keep track of entities and their relations for complex
domains when compared to the simplicity of schematic ones.

The DoD employs simulation systems to test the interactions between weapons and the
tactics to deploy them. These simulation tools include, but are not limited to, the Extended Air
Defense Simulation (EADSIM), Suppressor Composite Simulation System, Joint Interim
Mission Model (JIMM), and Simulated Warfare Environment Generator (SWEG).

In order to provide reuse of components and interoperability between DoD’s
simulation systems, there has been considerable research within AFIT. Each of these
simulation systems has its own specific textual description language and modeling techniques,
with some overlap between them. The nature of these languages requires the use of text
editors, which lead to substantial user interaction, interpretation, and time-consuming manual
generation of scenario files. Because of the unacceptable development times and costs, the

Sensors Directorate of the Air Force Research Laboratory (AFRL) requires modeling tools

that accelerate the creation and manipulation of objects and relations in a graphical user

interface environment.

1.3. Research Focus

This section discusses the objectives, scope and approach of the thesis.

1.3.1. Objectives

Simulation tools with textual languages have several usability problems. First of all,
the designer has to learn a textual language and understand the underlying architecture of the
simulation tool like a software engineer. This results in a steep learning curve. Large-scale
simulation scenarios sometimes require thousands of lines of textual definitions. This makes it
difficult to achieve some design tasks such as managing dependencies between simulation
entities, tracing, and debugging. Reusability of the scenario elements depends on manual copy
and paste methods in text editors. These problems lead to a time-consuming design process,
which may mean higher cost or mission failure.

Because of these problems, the simulation community requires graphical user interface
environments that are designed to meet the cognitive requirements and the tasks of scenario
development. This research asserts that a common object-oriented modeling pattern can be
the basis for a generic user interface that will provide a graphical design environment for
modeling, including simulation tools with textual languages. Modeling process is in fact an
instantiation of component and relation types into a workspace and parameterization of their
attributes. A visual meta-language may be designed to specify component and relation types
of a modeling domain. If the language has the “transformability” property a software tool may
interpret these specifications and automatically provide the design environment. This

approach will not only solve the problems of using simulation tools with textual languages but

also provide a generic modeling tool for any modeling environment. The objective of this

research is to examine the applicability of this approach.

1.3.2. Approach

The visual meta-language, if designed properly, can be represented in a software tool
and drawn on a piece of paper or blackboard. This will enable designers to communicate and
discover ideas easily. It will help the designer as an external aid, which will increase human
processing memory by reducing search and enhancing the detection of design patterns. It will
simplify the model into a diagram, which would take pages to define textually.

This research effort focuses on developing a visual, structured, and modeling domain-
independent notation. Using the visual meta-language, Visual Meta-Language for Generic
Modeling (VLGM) specified in this thesis, an analyst can define the visual modeling
environment for a specific modeling domain, including simulations. VLGM serves as a
framework for modeling tools and is a basis for a common visual language among the
modeling community. The intention is to use the VLGM design to create a domain-specific
modeling environment. Once the domain-specific modeling environment is provided, an
analyst can design models. For simulation systems, these models can be parsed into the
scenario files to be executed in the simulation tool.

This research asserts that this approach addresses the usability problems of textual
simulation languages and benefits the overall simulation design effort by reducing the time
and cost for design and user training. It also provides a generic modeling environment for any
kind of modeling-domain and a communication platform between analysts from different

disciplines

1.3.3. Scope

Since three-dimensional or colorful structures and animations are difficult to present
on a paper or a board, the language does not include complex visual structures. VLGM is
generic enough to support any type of modeling domain. All types of simulations including
continuous, discrete-event, deterministic, and stochastic simulations are supported. However,
real-time simulations like flight simulators cannot be supported since they are too specific and
have visualization, interaction, and performance issues that require a different engineering

process.

14. Structure of the Thesis

This document is composed of seven sections. In Chapter Two, a summary of the
current literature is presented. The disciplines involved include simulation, visualization,
cognition, modeling, communication, and language theory. In Chapter Three, the thesis
discusses the methodology used by means of a detailed examination of the Unified Modeling
Language (UML) including its drawbacks and how the proposed language addresses these
issues in the domain of modeling. In Chapter Four, the syntax and semantics of the proposed
notation are introduced. Chapter Five explains the research software tool that demonstrates
the model development environment. Chapter Six is composed of several case studies each
representing problems from different modeling domains. Chapter Seven summarizes the study

and presents suggested future research directions in this area.

2. LITERATURE REVIEW

The proposed approach to the problem of simulation scenario modeling requires
integration of ideas from various disciplines including simulation, visualization, modeling,
language theory, and software engineering. This chapter presents previous studies from these

areas.

2.1. Simulation

Simulation is a discipline for developing a level of understanding of the interaction of
the parts of a system, and of the system as a whole. As described in Webster’s Dictionary, it is
“imitation or enactment, as of something anticipated or in testing” or “the representation of
the behavior and characteristics of one system through the use of another system, especially a
computer program designed for the purpose” [WEB96]. System, in this context, means an
entity which maintains its existence through the mutual interaction of its parts. A system
exists and operates in time and space. In many respects, simulation is a daily-life experience
for humans. As humans think on anything, unintentionally they develop a mental model and
run a few different scenarios on that model in their mind. Similarly, computer simulations are

achieved by modeling the behavior of a system and running tests on that model.

2.1.1. The Simulation Process

The simulation process involves understanding and modeling a system by defining its
attributes and behaviors, validating the models, and performing statistical analysis of its
inputs and outputs. Avni Tayfun defines “model” as a manifestation of reality in a controlled
environment [TAY99]. A model possesses the prominent characteristics of the object,

concept, or system it represents in some detail. The simulation modeling process requires a

combination of art and science. To quote Tayfun, “Just like an artist, the simulation analyst
develops skills to observe and translate events, ideas, and attributes of pertinent surroundings
into a model” [TAY99].

Jerry Banks and Randall R. Gibson identify two skills that are required to be
successful at simulation: The ability to understand a complex system and its relationships, and
the ability to translate this understanding into an appropriate logical representation recognized
by simulation software [BAN97]. Banks and Gibson propose twelve guidelines for industrial
engineers who are getting started in simulation modeling as summarized below [BAN96].

1. Define the problem: Like other computer applications, a simulation model can
only do what it was designed to do — and it is impractical to design it to do
everything.

2. Understand the system: Be familiar with the procedures of the real system.

3. Determine your goals and objectives: Write down the goals and objectives.
Based on the objectives, decide the resolution level of the model.

4. Learn the basics: Try to obtain training for the simulation.

5. Confirm that simulation is the right tool: Other cheaper analytical solutions
may be possible.

6. Attain support from management: If the results will not be used, the project
effort is irrelevant to the system.

7. Learn about software tools for simulation: Determine the correct tool.

8. Determine what data is needed and what’s available: Assumptions might be
required for unavailable data.

9. Develop assumptions about the problem: Assumptions are required to optimize

the simulation scenario and to simplify the model.

10. Determine the outputs needed to solve the stated problem: Define

measurements, including how to collect and use them.

11. Simulation conducted internally or externally: Decide to use or not to use a

consultant from outside of the company.

12. Kick off the project: Plan a meeting to present the results of the simulation.

Based on the survey by Tayfun the benefits of simulation modeling are managing
change, minimizing risk, promoting creativity, enhancing communication, and providing
accelerated testing and quantitative solutions. Simulations also avoid disturbance of the real
system [TAY99].

Another study by Banks and Gibson presents the “evolving” characteristics of the
simulation model. They concluded that the demand to use the same model that had been built
early, in later project stages is an unrealistic expectation, since industrial systems and
engineering projects evolve. Some of these changes include equipment, location, operating
details, layout, control rules, operating procedures, material arrival profiles, material
quantities, material sizes, order mix, order size, order profiles, operating assumptions,
operating hours, staff shifts, breaks, labor work standards and practices. Any change to the
actual system may have a significant effect on system operation, throughput, and other
parameters. In order to provide accurate, useful results, a simulation model must evolve to
keep up with the simulated system as it changes [BAN98].

Banks and Gibson also surveyed the danger of the assumption that complex
simulations can be carried out using software without some degree of programming. Non-
programming simulation software systems are based on pre-built constructs for typical
activities and are often too generic. If the level of simulation software interface is scaled from
total programming through non-programming, as the level of simulation software interface

increases, the less flexibility is given to the analyst. In software with high-level user

interfaces, most modeling decisions are made by the developers of the software, not by the
user. Simulation software should ideally allow users to operate at different levels and to
change smoothly between them. Otherwise, the analyst may produce overly simplified and
invalid models. Non-programming software packages hide critical details that the analyst
needs to see in order to understand and verify the model’s behavior and results. Although this

kind of software provides ease of use, it may endanger the fidelity of the model [BAN97].

2.1.2. Multi-domain Simulation

Andrzej Bargiela categorizes the strategic directions in simulation and modeling into

three categories [BAROO]:

1. Abstraction: A scientific tool for coping with the complexity of the systems.

2. Uncertainty processing: Human-induced uncertainty effects on systems and
modeling methodologies.

3. Simulation Paradigms and Architectures: Large-scale adaptive systems with
agent-based modeling and simulation paradigms, distributed and global simulation
paradigms, and effective visualization and interaction techniques.

Bargiela emphasizes the importance of standards in distributed communication objects

(e.g., CORBA, Java), distributed simulation (e.g., HLA/RTI), and distributed collaborative
modeling (e.g., DEVS/CDM). These standards offer the potential for simulations to be
constructed by interconnecting various models. These improvements and the widespread
availability of digital communication lines and the Internet provide the technical opportunity
to develop large-scale distributed simulations [BAROO].

Philip Clarke states that a variety of simulation software have recently been created

that allows the user to design in an environment closer to the application domain and removes

the low-level details of the implementation. These commercial simulations offer simulation to

10

non-programmers. However, this type of software provides domain-specific solutions.
Modern systems have many facets. This implies the requirement to integrate these different
software packages [CLA99].

Clarke introduced the generic co-simulation tool called pLUG&SIM. Developed by
simulation tools company, Integrated Systems Inc. (ISI) [CLA99], this tool provides an
environment to build interfaces between models of different simulation software. Once the
interfaces have been built between models, different simulation software can run concurrently
and simulate a heterogeneous system by sharing data among each other. This solution also
provides the flexibility to execute different software packages on different machines and
benefit from the advantages that distributed software systems provide. The tool is based on
the Common Object Request Broker Architecture (CORBA), which enables users to work in a
distributed computing environment. Figure 1 is a screenshot of the pLUG&SIM user interface

[WINO8].

plUGESIM L vmaik wilemanal alnes

ey, Hybrid Model Hisrarchy A ol T sy Paey | Tyees b P | R by G| T i G |
& 21 Powartrain L T E @ noal i 3 naat
3] o input] @ noat s 3 foat
§ BB Contromeni) Sfinpit 3 I3 foat 3 & noat
¢ 5 Elecinica[7] B oups RPW 1@ noal 1 i noat
A Error Contreid) B outpd Torque i@ nost ¥ (@ noat

BB injectian Cordrall¥

[e —

Esady

Figure 1. pLUG&SIM Interface

11

Another study that addresses multi-domain simulation requirements is presented by
Ali Goucem. Goucem introduced the language design group created within the ESPIRIT
“SIE-WG” project in September 1996. Twelve months later, the group published the
specification of a system modeling language called “Modelica” [GOU99].

Modelica is an object-oriented language of large, complex, and heterogeneous
physical systems. Models in Modelica are described by differential, algebraic, and discrete
equations. Modelica is a textual language, and the tools supporting Modelica provide a
graphical modeling environment. Currently, the Dymola software package by Dynasim, a
Swedish company, supports the use of Modelica language [MODOO0]. Modelica language is
important because of its resemblance to this research. The comparison of Modelica and this

research is presented in Table 1.

Table 1. Modelica Vs. VLGM

Aspect

Modelica

VLGM

Structures

Special types of classes and
primitive types

Special types of classes and
primitive types

Representation

Textual

Visual

Described by differential,

algebraic and discrete equations.

None. Application domain is larger

SIErERET This limits the language to but lacks behavioral description.
physical systems.
. L . Composition, inheritance, port type
Relations Composition, inheritance selection
Visual Able to specify visual properties of
e . None ;
specifications components relations and ports
Able to specify constraints over
Constraints None relation cardinalities and value

ranges

12

2.2. Modeling and Object Orientation
This section focuses on general concepts of modeling and the object-oriented

paradigm.

2.2.1. Modeling

James Rumbaugh, Ivar Jacobson and Grady Booch define a model as a representation
of something in the same or another medium. Models capture important aspects of a system,
use a medium that is convenient for working, and can be used for engineering calculations
[RUM99]. Models are intended to be easier to design and use than the final system.

Rumbaugh, Jacobson and Booch list the uses of models as follows [RUM99]:

To capture and state domain knowledge so that all stakeholders may understand
and agree on them.

- To think about the design of a system.

- To capture design decisions.

- To generate usable products.

- To organize, find, filter, retrieve, examine and edit information about large

systems.

- To explore multiple solutions economically.

- To master complex systems.

Models are composed of semantics, presentation, and context. Textual or visual
notation determines how to represent a system, semantics are the meaning of notational
expressions, and context is the internal decomposition of the system represented. The amount
of detail in a model is the analyst’s choice and should be based on one of the following
purposes [RUM99]:

- As a guide to the thought process (Hierarchical top-down decomposition).

13

- Abstract specification of the essential structure of a system (Intended to be evolved

later).

- Full specification of a final system (Enough information to build the system).

- Examples of typical or possible systems (Provides comparison between options).

- Complete or partial descriptions of systems.

A modeling notation is also called a “modeling language” since models provide a
communication mechanism. Modeling languages can be textual or visual. Kim Marriot and
Bernd Meyer describe visual languages as some set of diagrams, which are a collection of
symbols in a two or three-dimensional space [MAR98A]. Visual modeling languages have a
wide-range of application areas such as circuit design, software engineering, aviation charts,

maps, and sign language.

2.2.2. The Object-Oriented Paradigm

Object-orientation is an approach to problem solving which seeks to identity the
relevant objects in the problem domain. These objects are then defined and employed to solve
the problem. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and
William Lorensen defined the term “object-oriented” as follows:

Superficially the term "object-oriented,” means that we organize software as a

collection of discrete objects that incorporate both data structure and behavior. This is

in contrast to conventional programming in which data structures and behavior are

only loosely connected. [RUM91]

An “object” is the most fundamental concept in the object-oriented paradigm. It is a
conceptual (logical or physical) entity composed of attributes and methods. Attributes hold
the data that determine the state of the object, and methods determine the behavior of the

object based on its current state. An object is normally referred to by a name and has an

14

“identity.” Attribute values of an object might change in time, perhaps as a result of
performing a behavior, but it would still be the same object [STE99]. A UML representation
of object is shown in Figure 2 [MUL97].

A “class” is an abstract representation for some particular type of object. Often
described as a blueprint for an object, it defines objects of that type. Objects are built from the
class by a process named “instantiation.” As a result, any object is an instance of a class.
Figure 3 shows the UML representation of class. Different types of relationships are
applicable between classes. An “association” relationship is a semantic connection shown

with a line between classes or objects as in Figure 4 [MUL97].

An Qhject Anaother ohject

Figure 2. UML Obiject Representation

Motorcyele

Class name Cl:lll:_lr _
attributes Engine size
Maximum speed

Cperations(

Start(
Acceleratel)
Brake

Figure 3. UML Class Representation

LIniversity Student

Mulhouse : University Fierre-Alain : Student

Figure 4. UML Association Relationship

15

By default, an association expresses a weak coupling between abstractions. An
“aggregation” is a special type of association expressing a strong coupling. Aggregation
indicates relationships like “part of,” “composed of,” or “master and slave.” It is represented
with a diamond. UML also defines even stronger coupling, “composition,” meaning that
when the owner object is deleted it results in the deletion of its composite objects.
Composition is represented with a filled diamond [MUL97].

Inheritance is a relation where one class has all the properties and methods of its
parent and extends it by including additional methods or variables. Classes are ordered within
an inheritance hierarchy. A “superclass” is an abstraction of its “subclasses.” The UML

representation of an inheritance relation is shown in Figure 6 [MUL97].

S -
Ferson |- 40wng -l
R,
1 0.n
Car - Engine
] 1 1

Figure 5. UML Aggregation and Composition Relationships

Yehicle
Landvehicle Airvehicle
Car Truck Flane Helicopter

Figure 6. UML Inheritance Relationship

16

Abstraction, encapsulation, inheritance, reuse, and emphasis on the object structure
instead of the procedural structure are themes well supported by the object-oriented paradigm.
Rumbaugh, Blaha, Premerlani, Eddy and Lorensen define “abstraction” as focusing on the
essential, inherent aspects of an entity and ignoring the accidental properties [RUM91]. Use
of abstraction during analysis means concentrating on application domain concepts and not
making low-level design decisions. “Encapsulation” (information hiding) is achieved by
differentiating accessible and inaccessible properties of objects from outside of the object.
Details of an object can be changed while its interface remains the same.

The object-oriented paradigm promises improvement in productivity by being a
natural match between implementation and problem. It promotes reuse of objects and
increases quality by reducing errors and coupling. It provides better maintainability by
encapsulation, and ease of extensibility by simply adding another object or feature to an

existing object.

2.2.3. Object-Oriented Modeling Approaches and UML

Object-oriented modeling languages emerged in the 1970’s and different approaches
to object-oriented analysis and design have been proposed. In the 1990’s, more than 50
different object-oriented methods were available. The confusion caused by different
interpretations limited the progress of these methods. Stronger versions of these methods
began to appear by late the 1990s, including OOSE (Object-Oriented Software Engineering)
by Ivar Jacobson, OMT (Object Modeling Technique) by Jim Rumbaugh, and Grady Booch’s
method. OOSE provided a use-case-oriented approach supporting requirements analysis based
on interactions between users and systems. OMT was especially expressive for analysis and

information systems. Booch’s method was particularly expressive for system partitioning.

17

Table 2. Origins of UML

Booch Categories and subsystems

Embley Singleton classes and composite objects
Fusion Operation descriptions, message numbering
Gamma et. al. Frameworks, patterns and notes

Harel State charts

Jacobson Use Cases

Meyer Pre- and post-conditions

Odell Dynamic classification, emphasis on events
OMT Associations

Shlaer-Mellor Objects’ lifecycles

Wirfs-Brock Responsibilities and collaborations

The unification of Booch and Rumbaugh resulted in the release of a draft version 0.8
of UML in October 1995. In fall 1995, Jacobson joined the unification process [OMGO01].

Table 2 presents the previous efforts that have influenced the unification [MUL97].

The unified methodology is designed to provide guidance to the order of team
activities, to direct the task of individual developers and the team as a whole, to specify what
artifacts should be developed, and to offer criteria for monitoring and measuring a project’s
products and activity. Jacobson, Booch and Rumbaugh list the four goals of UML as follows
[MUL97]:

1. To represent complete systems using object-oriented concepts.

2. To take into account the scaling issues.

3. To establish an explicit coupling between concepts and implementation.

4. To create a modeling language usable by both human and machines.

The unified development process met the requirements of the software development

community with a generic process framework that can be specialized for a variety of software

18

systems, application areas, organizations, competence levels, and project sizes. The
distinguishing aspects of UML are the ability to provide a use-case driven, architecture

centric, iterative, and incremental design process [JAC99].

2.2.4. Modeling — The Big Picture

When Peter Chen introduced the entity-relationship model, as a special diagrammatic
modeling technique for database design, he also explained the problems with the current
techniques and integrated his model into a design process. His model addressed weaknesses
and strengths in three major data models: the network model, the relational model, and the
entity-set model. Chen identified four levels of logical views of data: [CHE76]

1. Information concerning entities and relationships, which exist in one’s mind.

2. The information structure.

3. The access-path independent data structure.

4. The access-path dependent data structure.

In the hierarchy of abstractions, an entity-relationship model presents the first and
second level. Then, task dependent implementation specifications follow the entity-

relationship model. Chen also proposed a four-step design methodology [CHE76]:

=

Identify the entity sets and relationship sets of interest.

2. ldentify semantic information in the relationship sets (Cardinality).

3. Define the value sets and attributes.

4. Organize data into entity-relationship relations and decide primary keys.

Likewise, when Ivar Jacobson, Grady Booch, and James Rumbaugh developed UML
(Unified Modeling Language), they integrated the technique into the software development
process [JAC99]. These two cases imply that the modeling technique should explicitly

determine the pitfalls of the former techniques, objectives of the new technique, where to

19

place the technique into the big picture of development process, and some design patterns to

be used.

2.3. Facets of Modeling
This section covers the facets of modeling: abstractions, relations, and behaviors.

Issues in dynamic models are also covered in this section.

2.3.1. Abstraction
Diana Kao and Norman P. Archer defined modeling as an iterative process that
involves constant generation of sub-design tasks and constant moving among such tasks.
They proposed a framework suggesting that the completeness of the design output can be
enhanced by effective use of abstraction techniques. The object of creating abstractions is to
reduce complexity, which is related to the number of objects, their attributes, and
dependencies caused by the relations among objects. Generally, abstractions are created by
reducing the number of objects and their associated values or by simplifying the relations
among objects. Using abstractions, designers can handle the complexity of a problem so that
they can focus on certain problem facets, deal with problems at a desired level of complexity,
and think about the problem rather than being occupied by the details. Kao and Archer
categorized types of abstractions as follows [KAO97]:
- Horizontal Abstraction: Horizontal abstractions include many facets at a
particular level of detail and deal with breadth of a design problem.
- Vertical Abstraction: Vertical abstractions involve several levels of detail along a
particular problem dimension and decomposition of design tasks.
- General Abstraction: General abstractions are relations or dependencies among

ideas that are represented vertically and horizontally.

20

A top-down design approach to a problem can be either breadth-first or depth-first. A
top-down breadth-first approach usually involves identifying the key problem facets
(horizontal abstractions) before working any detail of those facets. A top-down depth-first
approach focuses on one problem facet from the more general to the detailed level (vertical
abstractions). A bottom-up approach deals with the problem at the detailed level first
[KAO97].

Kao and Archer also observed the techniques used in modeling a problem, the
information chosen by the designer to be included in the model, and the number of abstraction

levels identified. Their study, as summarized in Table 3 reveals the differences between

domain expert designers and non-domain expert designers [KAQ97].

Design
Dimension

Completeness

Table 3. Modeling Abstraction

Domain Expert

Able to identify and
state which facets
were most crucial

Non-domain
Expert

Unclear which
facets were most
important

Comments

Domain experts
applied horizontal
abstraction more
effectively

High level of
Abstraction

Demonstrate good
ability in clustering
ideas into high level
facet

Often list many
ideas, but failed to
group the ideas into
meaningful
problem facets

Domain experts
applied vertical
abstraction more
effectively

Organization

Tended to use high
level concepts and
principles to guide the
entire design

Domain knowledge
internally organized
into a design schema

Lack of goals and
objectives to guide
design

Lack of design
schema

21

Domain experts
generated cohesive
designs

Domain experts
were able to
organize design with
fewer hanging ideas

2.3.2. Relations

Conrad Bock and James Odell published a series of articles on relations that offer
more complete models by exploring different aspects of relations [BOC97A, BOC97B,
BOC98A, BOC98B]. Their suggestions are based on treating associations as first-class object
types. The first article showed that the current modeling of cardinalities is ambiguous, since
the models cannot distinguish between the number of objects in a single link and the number
of links in which the same object can participate [BOC97A]. The second article asserts that
the standard model of navigation does not include the navigation from an object to the links in
which it participates and vice versa [BOC97B]. The third article suggests that the modeling of
a “role” will be more complete if it is always taken in the context of relation [BOC98A]. The
final article extends the aggregation model by allowing relations to be involved in an
aggregation on either side - both as an owner and as a part [BOC98B].

Bock and Odell identify two types of cardinality constraints and discuss how these
cardinality constraints might resolve ambiguities in existing methods [BOC97A]:

Single Tuple Cardinality: Single tuple cardinality specifies the minimum and
maximum number of objects that can participate in a single tuple (or link in UML) of the
relation. For example, a marriage relation involves one man and one woman.

Multiple Tuple Cardinality: Multiple tuple cardinality specifies the minimum and
maximum number of tuples in which an object can participate at a time. A man or a woman
can only have one marriage for each.

Most modeling languages combine these cardinality constraints into one constraint.
This situation not only introduces loss of some information but also ambiguity during the
transition from the modeling phase to the implementation. Bock and Odell suggested a

recursive (non-mathematical) technique, which covers the missed information and avoids

22

infinite recursion. Figure 7 demonstrates how to model both single and multiple tuple

cardinalities.

P ermon

+purchase

Product

FPerson

+purchase

Product

Flace

Eelations

a..

1

Tk
Llultiple Tuple

Single Tuple

Cardinality ™

Purchase

Flace

'

Cardinality

Eelations

Figure 7. Expressing Cardinalities

han

marriage

Warman

1.1

0.1

Marriane

Hushand

0.1

0.1

1.1

0.1

Wyifie

City Hall

cedification

23

Figure 8. Relations as Objects

As stated earlier, Bock and Odell’s model centers on treating relations as object types
(Purchase in Figure 7 and Marriage in Figure 8) and relating them to their participating types
(Person and Product). This causes an infinite recursive structure. This problem is addressed
by defining a default object, called “place” that keeps only the participant types of the place
relation when there’s no user-defined feature (attributes or methods) for the place relation. If
the designer decides to define features to the place relation, places are then transformed into
full objects. This procedure can be repeated to the level that the user requires [BOC97A].

Navigation between objects is simply a mapping, which is analogous to the
mathematical concept of a “function.” The difference between mapping and a relation is that
mappings have “directionality.” [BOC97B] For each relation there are navigation choices to
implement in the design stage. These kinds of choices are called “design templates.”

Design templates delay the decision of navigation specification. Using design
templates and delaying the decision to a later design stage allows designers to focus on
optimizing usage scenarios. This also improves usability by allowing selection from different

navigation possibilities in each use.

This approach becomes more complicated in the case of place relations. Most current
modeling methods cannot model mappings between relation participants and the relation
itself, since they do not treat relations as objects. Bock and Odell identified two different

types of mappings [BOC97B]:

Optimized mappings: The navigations are directly implemented and answers are
obtained quickly.

Derived mappings: The navigation occurs by a defined routine. Since it is based on a
calculation or a search, it is slower.

The following considerations are suggested for derived mappings [BOC97B]:

24

- It is not space-efficient to allow fundamental types to be input to the optimized
mappings such as to store a reference to the sum of two integers.

- The designer should keep track of validity of the derived mappings such as a
discount’s affect on the price of an item for specific purchase.

- Some mappings might be a hybrid of optimized and derived. For example, the
total price of a purchase is calculated by addition of the price of each item in the
chart, but, a discount might be applied over some of the items.

Bock and Odell identified two kinds of information that help manage the creation and

destruction of tuples (links) [BOC98A]:

Allowed types: Restriction on the objects that can be connected by the relation over
given time. For a marriage relation allowed types are a man and a woman.

Current types: ldentification of the objects that are currently connected by the
relation. Current types for a marriage relation are a husband and a wife. This technique
reveals the information missing in most of the current modeling methods, as shown in Figure
9 [BOC98A].

This cardinality restriction allows a better clarification of the model. Bock and Odell
also introduced “non-current types,” which covers the objects that could be related, but
currently are not, such as a bachelor and a bachelorette for a marriage relation. They

mentioned that this type also has similar services and benefits as current types.

25

i & rrig ge

Mamn Woman

Husband | marriage Wife

Figure 9. Allowed and Current Types

This model provides several benefits. First of all, the inheritance hierarchy simplifies
modeling and provides a closer match to real life. The attributes and methods defined for
subtype are effective only in the case of a link between objects. From a conceptual point of
view, this model helps clarification between what’s possible and what’s actual, thus, it
expands expressiveness and flexibility. This technique also benefits in aggregations. For
example, aggregation between a vehicle and an engine can be better specified by
differentiation of car engine and boat engine.

However, this technique requires implementation of run-time reclassification meaning
that the class of an object might be changed without affecting its identity. Although most
programming languages do not support reclassification, it can be achieved by object-slicing
which is casting an object to a base object. This extra effort is paid back by simplification and
scalability. This method conflicts with UML in which a role is only an interface that must be
supported by the allowed type rather than being a type under which instances can be
reclassified [BOC98A].

Bock and Odell also showed that relations might be parts of an aggregate, as well as
aggregates themselves. Most modeling methods omit the following uses of relations in

aggregations [BOC98B]:

26

Relations as parts of aggregate: Since a relation is treated as an object, both objects
and relations can be a part of an aggregation.

Relations as aggregates: Aggregation may also relate two relations. There are two
kinds of aggregates: objects and relations.

The diagrams in Figure 10, Figure 11, and Figure 12 present the usages of the

aggregation.

|

Enging Trarr=miggion

?i .

|'.. \.I § .-.. - 2.
| Piston | |I:r:"|b:-:h=rl:| | Gears | |__Ehit |

Figure 10. Standard Part Hierarchy

D

=

Enpine Transmission

TN L

-
K

i -\..1 -'-.. - .
Pistan Crankchat Gears Shifl
| | Ll | | | ! —

Figure 11. Part Hierarchy with Relations as Parts

27

Company +Joinl Developmenl m

R R T §
Legal Lesgal
] +Caniract
Enginesng | | Emineeding
+Desyalopaen
Exgiptive E'-:an:ulr.-e__
+Etrategy —

Figure 12. Aggregate Relation Between Relations

2.3.3. Spectrum of Dynamic Systems and Models

Hartmut Bossel explains two different approaches to simulate a behavior: by
description and by explanation. The first approach, description of behavior, is based on
observing the behavior outputs under different input conditions. This approach treats a system
as a “block box.” The second approach, explanation of behavior, is based on understanding
the parts of a system and interactions among them, thus, a system is treated as a “glass box”
[BOS94].

Bossel also provides a specification of dynamic models in a spectrum based on the
following terms [BOS94]:

Explanatory-Descriptive: If the goal is not only to mimic the behavior but also to
understand how it works, explanatory models are used. These models are also called “process

models,” “mechanistic models,” “real-structure models,” or “structural models.”
Real Parameter-Parameter Fitting: Real parameters involve using the actual
parameters that can be measured directly in the system. If the real parameters are not enough

to describe the system, parameter fitting is necessary and the parameters should be designed

28

so that quantitative results of simulations won’t conflict with the empirical observations on
the system.

Deterministic-Stochastic: This specification is based on the presence (or absence) of
random variables involved as an input to the system behavior. Stochastic models produce
different results for each run.

Constant Parameters-Time Variant Parameters: The parameters of the system may
be constant or a function of time. This means the behavior of the system changes by time or
stays constant.

Non-linear-Linear: This mathematical distinction is based on the change rate of the
state variables. Analytical methods can be used for linear systems where numerical simulation
is usually necessary for non-linear systems because of the complexity involved.

Time-Continuous-Time-Discrete: For continuous models the state of the system can
be measured at any instant or time interval, where the state variables in discrete models are
observable at certain discrete time intervals.

Space-Discrete-Space-Continuous: Real systems cannot be located at a single point,
but, in some cases spatial distribution of the system does not affect their behavior. Airflow
distribution on an aircraft wing is essential for wing design, but pressure distribution in a
closed hydraulic system is not important since it will be identical at each point. It is obvious
that simulation of systems with spatial gradients demands a lot more computation time.

Autonomous-Exogenously Driven: Systems operate in an environment, which they
receive inputs, and produce outputs based on their state. Systems that are not subject to
exogenous inputs are autonomous. Real systems cannot be autonomous in long run, but often,

autonomous properties dominate their behavior.

29

2.3.4. Behavioral Models

Conrad Bock shows how behavior models can be used in an object-oriented way.
Behavior models coordinate steps and are concerned with when to take each execution step
and when the inputs are determined [BOC99A].

- Control Flow: The control flow model takes each step when another one is
complete and does not require any input to be ready. Flow Charts used in
programming are an example of this kind of model.

- Data Flow: This model takes each step when other steps provide inputs such as
functional languages, assembly lines.

- State Machines: State machines take each step based on outside events. The
inputs are calculated as part of the step itself. Vending machines are this kind of
system.

This characterization of behavior models leads to the chart in Table 4. These models
can be unified into one at the expense of losing expressibility since each concentrate on
different aspects [BOC99A]. Control flow emphasizes the sequencing of steps, data flow
emphasizes the calculation of inputs and state machines emphasize a response to an external
stimuli.

Bock also identified three different ways to integrate these models into the object-
oriented paradigm. Steps in these models can be mapped to the methods of classes and
operations written in non-object-oriented way can be invoked. A relatively harder way might
be associating each step with the changes to objects that the step is intended to cause, and
associating these changes with the steps they initiate. [BOC99A]

In another study, Bock discussed the difficulties and trade-offs in language unification
based on their observations on unification of behavior models in UML. Easy-to-use languages

are generally designed for particular applications and different languages cannot be simply

30

put into one large one, since it requires integration and harmony of artifacts. A trade-off

between generality and application-specific power occurs in unification. [BOC99B]

Table 4. Characterization of Behavioral Models

Control Flow Data Flow State Machine

Inputs Determined At start Before start At start

Start Conditions Internal Internal External

The authors of the UML integrate three behavior models starting with state machines,
since it’s the most familiar one to object-oriented designers. Control flow and data/object flow
were added later to support business modeling. UML also has a collaboration diagram which
shows the interactions of objects performing a task. Examples of UML behavior models are
presented in Figure 15 through Figure 14 [OMGO1]. Bock indicated the following problems
with the behavior model integration in UML [BOC99B]:

Comprehensibility issues. State machine users expect events to come from the
outside, not the inside, and expect states to be states of the object, not the behavior. Control
and data/object flow users do not see how state machines apply to their models

Emphasis on state machines. A particular event may only be executed once by a
state machine. But this is not acceptable in business modeling which treats an event as a
persistent object.

Notation for data/object flow. State diagrams cannot be directed to or from particular
inputs and outputs of states. If two inputs are of the same type, it is ambiguous in the notation
which takes which. Tool vendors are forced to invent or adjust their own notation and

consequently will fragment the standard.

31

State machines do not have parameters. Users requiring functional decomposition
cannot effectively reuse state machines. The user is forced to assign the business function to

an object to achieve it.

fufor 1 student *
{ Teacher | Person ! Student : Person

facully member leciurar 1 participant *

» Faculty | : L Course \
faculty 1 glven course * taken course *

Figure 13. UML Collaboration Diagram at the Specification Level

redisplay() —= | windm -
i | Fon— Wik

#AraMEelers WATaW

*1: displanPositionswindow) 1 1.1.3.1- addissi)

wire conlents [new)

lgczale i
IJI1.1‘[|:=1..n|: drawSegment{ijc” wire Wi 772 CrEIEIIJ:[E ::'; t'i_ iLina {row}

uself 1.1.3: cRsplayiwindow
1 |_|J il (i |

l|.1 1a; 0 2= position) * 1.1.1b: r:=posiion])

left: Bead | | rohl: Bead

Figure 14. UML Collaboration Diagram at the Instance Level

32

|t

racaivar
fpat dial lons

Idle

callar

hangs up
Mdisconnect

Active r Timeout]
do! play messa gEJ
after (15 s=¢.)
afler (15 sac |
| DialTone | dial digitin)

{do play dial tone dial digitin {invalid

[invalid

dial digiting
[eccamplada)

Dialing

dial digitinj[valsd]
fconmect

Ldﬂ.‘ play messageJ

GOl Ed
callee
cillee hangs up
answers
Ringing
calles answers dol play ringing
fenable spesech fons J’,

Figure 15. UML Statechart Diagram

33

Person::Prepare Beverage

o codtee]

Fiml
Beverage

[Found coffos]

—

\
Pt Coff
Ald Water Giet
tn Reservoir 1."1||1=
Put Filier
in Machine
Y
Turn on
MMachine
coffee PatimmCn
Hrew colles
light goes out ,b v
Four Caffee

[carla]

7

[Foend cola]

ael cans
o colu

Drink

Figure 16. UML Activity Diagram

34

Cashmer Sales St krosm

Roequezst service

'\-&M Oirder

placed] [" ™ -z
lake order §
\. J~ — L order

[Entered]

Crder | - -|'fl-'ill order
[filled] |“

&

Deliver arder

Drdar iy -

[il e

Collect order

Figure 17. UML Action-Object Flow Relationships

Bock also suggested Gamma’s State Pattern as an extension to UML to preserve the
benefits of two common approaches to state modeling [BOC00, GAM95]. Bock’s object-
oriented state is a combination of both behavior state and feature state. The approaches
identified by Bock are as follows [BOCO00]:

Behavior state. A machines reaction to incoming events is based on its state.

Feature state. This refers to constraints on the attribute values of an object and its

links to other objects. An object changes its state based on the constraints it satisfies.

35

Proposed object-oriented state. This model treats states as objects that are
instantiated and deleted at run time as state machine executes, following and extending
Gamma’s State Pattern.

The state pattern presented by Bock is only aimed at applications in which the
operations of an object have state-dependent methods [BOCO00]. Operations invoked on the
object are delegated to state instances, which have their own methods for the operations.

Figure 18 shows the proposed notation as an extension to UML [BOCO00]. “Person’s”
states are shown as “Sick” and “Well.” Sick state is defined as a state class. State classes can
participate in associations to model application-specific information. State instances provide a
place to record the information as the execution proceeds. The designer can define
associations between state classes and various kinds of resources. Figure 18 reveals that state
classes provide two separate places to record the following two aspects of feature states
[BOCOO]:

- A state class specifies general requirement for being in that state.

- The state instance records a set of specific feature values that justify the object

being in that state.

Bock also suggests using UML’s Object Constraint Language (OCL) to express the
constraints as shown in the Figure 19. The OCL is a formal language used to specify invariant
conditions that must hold for the system being modeled. In Figure 19, the feature state
“married” has a constraint defined via OCL. Being in “married” state is limited to one

“spouse,” not more or less.

36

— il Sick
Aockor 1 4 010 -
HowLaong © Lrays Well |
* S, S
! - Ly
’ .I;
State Class e e e --
i ’ ™]
: ’ |'I John-Sick | e i
¢ Cinslanreaf ;

"

Specialized State Class

Tare

HowlLang - Days
HowanyTumes: 23

-

y Emalasesal
Jobn-Sickid |

&

K

eature State Constraint
This spouse = size=1]}

N\

= Feature State Constraint =

Zinstancenf=

Howe Laong - 'i\

o aolate Instance

Figure 18. Object-Oriented States

Susan Martied ustification Susan & John &.JDM L -7 i
Ivlarried

Figure 19. Formalization of Feature States using OO states

37

John

2.4. Information Visualization

Expressions in visual languages involve the use of visual structures designed to carry
information within their variety of properties such as shape, color, dimension and relative
location. Interpretation of the information in visual structures depends on human perception
system. Since one of the main motivations to use visual modeling language is to provide
human-computer communication, the visual modeling languages should be designed by

considering both computational issues and information visualization techniques.

2.4.1. The Human Perception System

The human perception system is composed of a three-level hierarchical organization:
Non-foveal portions of the retina, foveola, and receptors in the foveloa [CAR99]. The retina is
good at detecting movement or other changes in the visual environment, by maintaining a
rough representation of the location of shapes previously examined. However, it cannot hold
detail. The foveola provides high resolution movement and focus of the eye and depth
information. Two encoding systems are applied to the information: spatial properties such as
location, size, and orientation, and object properties such as shape, color, and texture.
Receptors in foveloa provide a computationally parallel surveillance structure that moves in
the visual field to catch areas with high information content like moving objects.

There are two ways to process visual information: controlled processing and automatic
processing. Controlled processing is detailed, serial, slow, and conscious. Reading is an
example of this kind of processing. It provides low capacity and can be inhibited. Automatic
processing is superficial, parallel, fast, independent of load, and unconscious. While driving,
visual information is processed automatically. Automatic processing provides high capacity
and cannot be inhibited [CAR99]. Coding techniques to help search and pattern detection

should use features that can be automatically processed.

38

2.4.2. Benefits of Visualization Techniques

External aids serve two purposes: Communicating the idea and discovering the idea
itself. During thinking process, human uses internal representations. External aids help
expand capacity of thinking, memory, and reasoning. For example, the use a piece of paper as
an external aid eases multiplication of larger numbers. The notion of external cognition is
used to express the value of external aids and how we map between external and internal
representations [CAR99].

Mike Scaife and Yvonne Rogers surveyed how external aids help reasoning [SCA96].
They used three central characteristics to explain aspects of external cognition.
“Computational offloading,” which is reducing amount of cognitive effort required to solve
the problem, “re-representation,” which is the representation of problem in the external aid,
and “graphical constraining” which is application of constraints graphically. Scaife and
Rogers offered a list of general conceptual design issues of which designers should be aware
[SCA96]:

Explicitness and visibility. The designer should aim to facilitate higher levels of
understanding by means of explicitness and visibility.

Cognitive tracing and interactivity. Designers should pay attention to cognitive
traces and interactivity to facilitate ease of use and problem solving.

Ease of production. Designers should consider the ease of production of graphical
representation.

Combining external representations. Designers should decide to use different types
of external representations from textual to symbolic structures, whichever is suitable.

Distributed graphical representations. Collaborative construction of graphical

representations might be an issue.

39

The following are the six proposed major ways that visualization can amplify
cognition [CAR99]:

1. By increasing the memory and processing resources available to the users.

2. By reducing the search for information.

3. By using the visual representations to enhance the detection of patterns.

4. By enabling perceptual inference operations.

5. By using perceptual attention mechanisms for monitoring.

6. By encoding information in a manipulable medium.

2.5. Visual Language Theory
This section covers the specification and proposed frameworks for visual languages

and two example studies.

2.5.1. Specification of Visual Languages

Kim Marriott, Bernd Meyer, and Kent B. Wittenburg surveyed the formalisms that
have been suggested for visual languages over the last 30 years. The main motivation of
specification is to facilitate communication and interaction between humans and computers
[MAR98B].

Visual languages are not necessarily sequential, meaning that drawing and
interpretation order is irrelevant. Sequential languages like textual languages only have the
relation “immediately proceeds” in their grammar where diagrams may have relations such as
“above,” “below,” or “adjacent to.” With these differences, it is not always easy to specify
visual languages. Currently, there are three main approaches to specification of visual
languages. Marriott, Meyer, and Wittenburg also presented other kinds of formalisms that do

not fall into one of these categories [MAR98B]:

40

- Grammatical approaches: Based on the grammatical formalisms of textual
language specifications. The difference is dealing with sets instead of sequences to
specify geometric relations other than sequential.

- Logical Approaches: Uses first-order mathematical logic or other forms of
mathematical logic, which often stem from artificial intelligence. These
approaches are usually based on spatial logic and axiomatization of the different
possible geometric relations. One advantage of this is the same formalism can be
used to specify both syntax and semantics of the language.

- Algebraic Approach: Uses an algebraic specification that consists of composition
functions which construct complex pictures from simpler picture elements. Parsing
is typically achieved by finding a function sequence that constructs the picture.

Application areas for visual language specification might be graphical user interfaces

and interpretation of low-level media such as handwriting, sketch recognition and image
processing. Specification might be useful in graphical user interfaces for interpretation of user

input, design support and interaction with visual and multi-media databases [MAR98B].

2.5.2. Human Computer Interaction Framework

Hari Narayan and Roland Hubscher proposed a theoretical framework for visual
languages that emphasize human-computer interaction and addresses both computational and
cognitive issues [NAR98]. Visual languages are intended for use both by computers and
humans. They should be designed and analyzed based on both computational and cognitive
requirements. This implies that theoretical analysis should address issues of comprehension,
reasoning, and interaction as well as issues of visual program parsing, execution, and

feedback. Narayan and Hubscher also provide the following definitions [NAR98]:

41

Visual languages: Languages with alphabets consisting of visual representations that
are used for human-human or human-computer interaction.
Diagrammatic representations: Visual representations that encode and convey

information about their referents without being true analogs of the entities being represented.

Diagrammatic reasoning: The process of comprehending and making inferences
from diagrammatic representations.

Visual representations are designed to explicitly show the relations in the domain by
spatial and visual organization of information. This allows a viewer to recognize relevant
patterns, to detect emergent properties, and to derive meaning and inferences [NAR98].

Some application areas for visual languages include visualization of information,
graphical simulations, and direct manipulation of visual languages by graphical user
interfaces to enhance diagrammatic reasoning. Visual languages might also be used for
software visualization to enhance programming and debugging environments [NAR98].

Narayan and Hubscher build a framework for analysis and synthesis of visual
languages on three objects of interest to any theoretical or practical investigation: A
computational system, a cognitive system, and the language itself. The success of a visual
language in their framework depends on two criteria: Computational tractability and cognitive
effectiveness [NAR98]. Figure 20 shows the exchange of information between human and
computer by means of computation and cognition processes. The computer parses, interprets
and executes user inputs while the user uses perception and reasoning processes [NAR98].

The visual language analysis framework is divided into three subsections:
Representation of information, cycle of interaction, and evaluation. The framework structure

is presented in Table 5.

42

_ Parsing
o~ Perception Interpretation -~ .
/[y A
|IL Reazamng Excthtmn
L S -
S Creation Creation ——
Mampulation Mampulation
Cognition — Computation

Figure 20. HCI Framework

Visual Display

Table 5. Taxonomy for Visual Language Research

Representation of Information

Cycle of Interaction

Evaluation

Application Domain
Static Syntax

Static Semantics
Dynamic Syntax

Dynamic Semantics

Granularity
Visual Communication
Computational Aspects

Cognitive Aspects

Computational Evaluation

Cognitive Evaluation

Representation depends on the information being represented. The application domain

typically consists of objects, relations between objects and attributes of objects depicting their

state. Dynamic processes result in state changes. The language is a set of valid sentences

syntax is the rules for creating valid sentences and semantics stands for the meanings of the

sentences. Thus, a language has static and dynamic properties in their syntax and semantics.

The cycle of interaction describes the cognitive processes between human and

computer. The granularity of the cycle of interaction is a criterion to compare visual

languages. A visual language may be used for one or two-way communication. Depending on

43

the visual language, different computational processes may involve such as parsing,
interpretation, execution and generation. The cognitive aspects involved are perception,
comprehension, inference, and creation. The visual languages are evaluated by their
computational efficiency and cognitive effectiveness. The analysis can be done either at

individual language or as a comparison of two or more languages.

2.5.3. Representation Framework

Marc Andries, Gregor Engels, and Jan Rekers studied the representation of a visual
specification in a computerized environment. They stated that this software environment
should represent the specification at four levels in order to perform its tasks: Physical layout,
pictorial structure, abstract structure, and representation of the meaning [AND98].

The physical layout and the meaning of the diagram are important to the users of
visual languages. Andries, Engels, and Rekers proposed two intermediate representations,
Spatial Relations Graphs and Abstract Syntax Graphs to connect physical layout to the

meaning as shown in Figure 21 [AND98].

Production
Apphcations
Create Create
Spatial Relations Graph Represents p Abstract Syntax Graph
el
Eepresented by
Graphical Constraint Interpretation
Scanning Solving
Phy=ical Layout Meaning

Figure 21. Representation Framework

44

The Physical Layout consists of graphical objects (lines, circles, rectangles, text) that
are not interpreted yet. The Spatial Relations Graph is an abstraction of physical layout and
interprets diagram as spatial relations and objects. The spatial relations graph is graphical and
defines pictorial structure. It is generated by means of graphical scanning. The constraint
solver can generate a physical layout from the spatial relations graph. The Abstract Syntax
Graph describes visual sentences consisting of nodes and edges. A semantic processor can be

used to interpret the meaning of the abstract syntax graph.

2.5.4. Example Applications of Visual Languages

Simon J. Buckingam Shum, Allan Maclean, Victoria M. E. Bellotti, and Nick V.
Hammond surveyed the use of graphical notations to support argument construction and
communication. They present a use-oriented analysis of a graphical argumentation notation
named QOC (Questions, Options, and Criteria). Their study focuses on the specific domain of
software design, which has following problems [SHU97]:

- Some decisions that have been made early may be unclear to the subsequent

designers.

- Itis hard to keep track of discussions, decisions, and the criteria for decisions.

- These conditions block communication, reuse and recovery of reasoning

previously made.

These problems of the software design process can be assisted by an argumentation-
based design rationale. This method clarifies vague requirements and tracks their evolution by
means of representing multiple viewpoints and trade-offs. It offers consistency in decision
making, documentation of decision processes, and building cumulative design knowledge

through systematic reuse [SHU97].

45

QOC notation is based on four structures: Questions are used to encapsulate key issues
that shape the design, Options are alternative answers to Questions, Criteria are used in
assessing one Option over another, and Assessments are the relations between Options and
Criteria. Figure 22 [SHU97] presents the vocabulary of QOC, Figure 23 [CRE98] and Figure
24 [SHU97] show typical usages of the structures in discussion graphics and Figure 25

[SHU96] shows a screenshot of a software implementation.

Ophion ge=== == oljects fo ———= Crtenion
g

W e

Cntenion

iJueshon Chphion

e
- .-"] e w P —,
Lipion = supports Lntenon

"
"

x"\.
Conzequent (uestion f__’\,_‘l'é’

nestion

/N

Figure 22. QOC Grammar

2 Blackboard
2 Which medium? & O Slides
2 Projechor
2 Presentation

Software
Q: How to use? & O: Scrolling HTML

2 HTMIL Slides
O: Keywords Only |

0 How detaile:l?<
O Complete Phrases

Figure 23. QOC Example - Presentation Preparation

46

Compact
Vigual ease

Ease of nanigation

)) —
Which representafion do we choose? Bidirectional
\ Speed of daplay
"= - - Initial fast access
Table-basad .) _
(Likedliat) * Teghnicaly possble (esase)

Completeness of mfo
* Minimize confusion

) Eaze af navigalian
Parmanently magnified) _
iGN Wi ndan Wasamal information

Wikal method of navigation?

o of
[Coarse detail graph) Speed of acoess

Technical feasibility
Faad overall view

Woning frame rt
Clicked gives magnifed window £~

({Display caréral noda in top frame)
= Fast l=aming ourve

Ease af navigalian

f{f,.ﬁcmlﬂ‘mugh cortinuous Masimal infarmatian
What method of rendgation?

Speed of access
(Fine detail graph)

Technical feasibility
Gaad ovarall wviaw

Scroll through fig-chart like
{Wikh overall page map)

Fast leaming curve

Figure 24. QOC Example - Network Browser User Interface Design

Shum, Maclean, Bellotti, and Hammond analyzed their notation with three empirical
studies [SHU97]. They presented data drawn from video-based observations of designers
using QOC while solving problems. Four steps are watched in expressing ideas using QOC
notation: Identifying and separating elements of ideas (Unbundling), deciding whether a
contribution is a Question, an Option or a Criterion (Classification), labeling (Naming), and

linking to the other ideas (Structuring).

47

e oy g g;ﬁﬂ

| I3
i it
[af
i |
I]
II H
1N]
il I
| Il
I !
i aE
= at
= szt al
HE i il
[hess VB [-] [— i
L T < f T et T g N~ i
Il b s bl el i e e ,Q Y e— I[
pr— e sass iale dreallable
o = = Ak - - i
H Ayremm Lo ey fesc eowes by L‘ T wkmsi l'__,.J"' H
i ey i = al
—]
Il ? ¥ 58 . S l
Hatfal
Il Y T ke s R = -t~ Wit B0 Eisich sie]
i .li_: il T, B el Sl "
¥z
| TR ' L
|| i o o W gt Miees 1172575 W]
[l o ™~ i
Efstdrind 0l dmachis
L] e e T]
| i s |
Q - f‘?‘: = g W E*
........ aralem of ndec o
il L i /-/___.-"' e e o]
|| Q Mawoas _.F"....F // ||
domurmariaton, i
= - [|
|| I e e / |!
“-p-0 - -
n-;.._‘.w-\. B.o ;:ﬂ -b ﬂ
Wb _-I:l__.-""'/-}’ =
"-.h n‘; o -] ke o8k et
Graopy

Figure 25. QOC Software Screenshot

The conclusion of the study was that the QOC notation provides the most support
when elaborating poorly understood design spaces, but it creates a distraction for well-
constrained and understood design spaces [SHU97].

D. Jager researched generation of tools from graph-based specifications. Jager’s
approach is based on formal meta-modeling of visual languages in the very high level
programming language PROGRES (Programmed Graph Rewriting Systems). Tools for visual
languages are constructed automatically from the meta-model. PROGRES offers a variety of

features for manipulating graphs such as traversing paths within a graph, matching graph

48

patterns, and it supports the graphical specification of graph patterns [JAGO00]. Jager indicates
that the resulting tool is not the kind of tool they would like to have. It is slow and the
specification interpretation is environment dependent. Visualization is not suitable and the
user interface has usability problems. Finally, the code is difficult to maintain, since it

depends on the thesis students changing every year [JAGOO].

2.6. Principles for Visual Language Design

This section presents the principles for visual language design.

2.6.1. Critical Tasks of Modeling Languages

R.F. Paige, J.S. Ostrof, and P.J. Brooke suggested that like programming languages,
modeling languages should be designed if they are required to be practical, usable, and
accepted. The design process should be based on principles. The starting point to derive these
principles is to ask the intention to use modeling languages [PAIQ0].

The key question, the intention to use modeling languages, leads to the analysis of
critical tasks required by users of modeling languages. The critical tasks identified by Paige,
Ostrof and Brooke are architectural description, behavioral description, system
documentation, and forwards and backwards generation [PAIQO].

Architectural Description: Modeling languages are used to describe a system in
terms of abstractions and relationships at appropriate levels of detail. Modeling languages
should support development of large models and tracability between levels of abstractions.

While concentrating on large-scale model support, designers of the language should
not compromise the applicability of the language to small systems otherwise the language

might be difficult to learn for new users.

49

Behavioral Description: Behavioral descriptions capture the details of what each
abstraction represent, what each does, and when the interactions occur. Some types of
behavioral descriptions may be process algebras, state-based descriptions and natural
language.

System Documentation: Modeling languages are also used to provide documentation
on how the system works. Other than the model, which itself is a document, taking notes is
considered documentation support. The modeling language may provide automatic report
generation based on the notes and the model.

Forwards and Backwards Generation: One of the main interests in using modeling
languages is the ability to transfer from visual to textual language and vice versa. This is
sometimes called “round trip engineering.” In order to achieve this kind of capability, the
modeling structures of the language should be designed so that it will be easy to map them to
the structures of the textual language. Synchronization between the model and textual
definition becomes an issue, since the users often do not maintain both together.

Paige, Ostrof, and Brooke suggest that the goals defined above are not independent,
so, like all other engineering problems, designers of the language will face tradeoffs and it

will be difficult to satisfy each one of them [PAIOQQ].

2.6.2. Design Principles

Paige, Ostrof, and Brooke state that a great deal of effort has been spent on setting up
programming language design principles. Modeling languages and their tools should be
designed with the same care. Techniques, criteria and principles for designing modeling
languages should be produced and be validated by experiment. Design principles for

modeling languages based on critical tasks are explained as follows [PAIOO].

50

Simplicity: This should be one of the leading principles since the language is intended
to be used as a communication aid among humans and between human and computer. If the
language is simple then it will also be memorable, which is a desired property. Simplicity
provides ease of learning, the ability to draw models by hand, and greater ease in creating
software tools to support the language. There should be no unnecessary complexity in the
language.

Uniqueness: If a language has the uniqueness property, it provides only one good way
to express every concept. This prevents ambiguities and redundant overlapping expressions in
the models.

Consistency: This points to the purpose of the language. Any feature in the language
should address the purpose, otherwise it should be discarded. The authors mention that it is
hard to determine whether UML is consistent, since there are no precise design goals other
than standardization of modeling concepts. Consistency of language should not be confused
with the consistency of the model. Consistency of the model is related to the reliability and
will be discussed later.

UML allows users to describe a system with several different models. These models
may be independent like class diagrams, deployment diagrams, use-case diagrams. Although
they capture and emphasize different aspects of the system, consistency between models
might become an important issue for a designer dealing with large-scale systems. It is
questionable whether a consistency check for UML can be automated.

Seamlessness: This principle helps the ability to generate code from model. It
involves using the same abstractions in the model and in the textual language. This avoids a
logical “impedance mismatch.” UML is not seamless since some transformation mechanisms

are required to generate code for behavioral models.

51

Reversibility: The ability to generate a model from code contributes to the production
of maintainable code and to the documentation. This is a complex process since the textual
definition might implement a structure that cannot be expressed in the visual modeling
language.

Scalability: The language should provide mechanisms to handle large-scale problems.
At the same time, these mechanisms should not detract from the design of small-scale models.
To hold this principle, the language should provide concise mechanisms to define the
fundamental abstractions, ways to hide details and grouping mechanisms.

Supportability: It should be suitable for humans, since it will often be used on a
white-board or paper. It is also meant to be used by computerized tools. The language should
be implementable and supportable by software tools. This principle introduces restrictions in
syntax and semantics of the language.

Reliability: The goal is to produce quality models. To ensure reliability of the design,
the language should provide support for automatic consistency checks via the grammatical
rules of the language.

Space Economy: The models should take as little space on screen or page as possible
to reduce distractions caused by search and browsing.

B. Henderson-Sellers, D. Firesmith, and I.M. Graham [HEN97] outline the
characteristics of Common Object Modeling Notation, COMN, which is a notation of OPEN
(Object-Oriented Process, Environment and Notation) Modeling Language (OML). The
benefits of OML they mention reveal typical expectations from visual languages. Usability of
the notation is improved by intuitive symbols that help learning the syntax and semantics of
the language. The language should be simple, and consistent. Sellers, Firesmith, and Graham
state that integration of semiotics (study of signs and symbols) into the syntax enhanced

usability of COMN. Since a modeling language is intended to be used among humans it

52

should be easy to draw by hand and avoid using features such as color, boldface, and italics. It
should be able to handle large-scale projects and should not compromise usability for small-
scale problems. The language’s consistency with traditional notations also helps reduce

misinterpretation [HEN97].

2.7. Evaluation Criteria
Frank van Harmelen, Manfred Aben, Fidel Ruiz, and Joke van de Plassche studied
formal modeling languages that have begun to play an increasingly important role for
knowledge-based system (KBS) modeling. These languages reduce the vagueness and
ambiguity of informal descriptions, enable validation of completeness and consistency
through formal proofs, and bridge the gap between the informal model and the system design.
However, they suffer from usability problems. Harmelen, Aben, Ruiz, and Plassche took
(ML)?, a formal KBS modeling language, developed in 1990, as a case study and applied an
evaluation. They used the following set of evaluation criteria, which can also be generalized
for other languages [HAR96].
- Expressiveness: Were certain things impossible to express? Were some things
difficult to express?
- Frequency of errors: What are the most common errors and what are the
frequencies of those errors. Is there any way to identify and avoid them?
- Redundancy: Was redundancy present in models? Can we identify different type
of redundancy? How can redundancies be avoided?
- Locality of change: Do changes propagate through the formal models? If so, what
are the causes, and can they be avoided?

- Reusability: Do our models enable reusability?

53

- Guidelines and tool support: Are these guidelines proposed in earlier research

helpful? Was the tool support useful?

T.R.G. Green and M. Petre [GRE96] identified that evaluation of a programming
language requires both the psychologist’s and computer scientist’s point of view, however, it
is difficult for psychologists to understand the design issues, and computer scientists might
fail to see their creations through a psychologist’s eyes. Green and Petre proposed a cognitive
dimensions framework as an evaluation method to visual programming languages so that a
programmer can concentrate on the standard tradeoffs by means of these dimensions
[GRE96].

The cognitive dimensions framework defines a small set of terms. The dimensions are
meant to be coherent with each other like physical dimensions. A programmer thinking his
design along these dimensions will explore the tradeoffs involved. Any cognitive artifact can
be described in these terms. Although that description might be at a very high level, it will
predict some major aspects of the user activity. Green and Petre used two commercially
available visual programming languages: LABVIEW and PROGRAPH to illustrate the
framework and demonstrate the type of conclusions to which the framework leads. The list of
dimensions is as follows [GRE96]:

Viscosity: How much effort is required to perform a single change? Does a local
change in the model affect other parts of the model in an unnecessary user interaction?

Abstraction gradient: What are the minimum and maximum levels of abstraction?
Can fragments be encapsulated? Introducing more abstractions might be a solution to
viscosity problems. Well-chosen abstractions can also increase comprehensibility and protect

against errors.

54

Closeness of mapping: What programming techniques need to be learned to map
problem domain to program domain? The closer the real world is to the program world, the
easier the problem solving is going to be.

Consistency: When some of the language has been learned, how much of the rest can
be inferred? The language might be consistent for the designer but it might create problems to
the user. Increasing abstractions can also change the closeness of mapping either for better or
worse.

Diffuseness/Terseness: How many symbols or graphic entities are required to express
a meaning? Some notations might be achieved more compactly by reducing the number of

symbols used to solve the problem.

Error-proneness: Is there any ambiguity in the notation? Does the notation itself lead
to errors?

Hard mental operations: Are there places where the user needs to resort to fingers or
pencil annotation to keep track of what is happening? The language should avoid brain
twisters. The problematic mental operations must lie at the notational level, not solely at the

semantic level.

Hidden dependencies: Is every dependency overtly indicated in both directions? Is
the indication perceptual or only symbolic? Hidden dependencies might be introduced by
more abstractions. Browsers might be used to make hidden dependencies visible. But the
distractions of invoking the browser break up the pattern of problem solving. Over-
specialized views given by a browser often deprives the programmer of opportunistically
taking advantage of information from other sources.

Premature commitment: Do programmers have to make decisions before they have

the information they needed? Increasing abstractions might force the designer to guess ahead.

55

Progressive evaluation: Can a partially-complete program be executed to obtain
feedback on “How am | doing?”

Role expressiveness: Can the reader see how each component of the program relates
to the whole?

Secondary notation: Can programmers use layout, color, or other cues to convey
extra meaning?

Visibility: Is every part of the code simultaneously visible? Introducing visual

browsers may decrease visibility problems.

2.8. Literature Review Summary

This section presented the relevant current literature in the research disciplines of
simulation, modeling, visualization, language theory, and software engineering. The literature
study on simulations focuses on the modeling aspect of simulations. It included advantages of
the simulation modeling as surveyed by Tayfun [TAY99] and general guidelines for
simulation design by Banks and Gibson [BAN96]. Banks and Gibson also inform about the
“evolving” characteristics of the simulation model [BAN98], and the danger of using
simulation software without programming [BAN97]. Bargiela [BAROQO] divided the strategic
directions in simulation and modeling into three categories, emphasizing the importance of
multi-domain and distributed collaborative simulations. Clarke introduced the generic co-
simulation tool called pLUG&SIM [CLA99] that provides an environment to build interfaces
between models of different simulation software. An object-oriented language, “Modelica”
[GOU99, MODO00], published by design group created within the ESPIRIT “SiE-WG” project
was surveyed. Modelica is a textual language to specify large, complex, and heterogeneous

physical systems. The comparison of Modelica and VLGM was also provided.

56

Concepts and different aspects of modeling and object-orientation were examined
from various sources [RUM99,FOW99, STE99, MUL97, RUM91]. The research also
included the unification process of object-oriented modeling techniques by James Rumbaugh,
Ivar Jacobson, and Grady Booch [OMGO1, MUL97, JAC99]. The study by Peter Chen
(entity-relationship model) [CHE76] and UML [JAC99] implied that the modeling technique
should explicitly determine the pitfalls of the former techniques, objectives of the new
technique, where to place the technique into the big picture of development process, and some
design patterns to be used. Three facets of modeling, abstractions [KAO97], relations
[BOC97A, BOC97B, BOC98A, BOC98B], behavioral models [BOC99A, BOC99B, OMGO01,
BOCO00, GAM95], and specification of dynamic models [BOS94] were examined in detail.

The background study about visual language theory [MAR98B, NAR98, AND98,
SHU9%6, SHU97, CRE98, JAGOQ] , human perception system [CAR99], and amplification of
cognition [CAR99, SCA96] by visualization techniques formed the theoretical basis of the
research. Finally, the design principles and evaluation criteria for visual languages were

surveyed [PAI00, HEN97, HAR96, GRE96].

57

3. METHODOLOGY

This chapter explains the methodology used to solve the problems of textual

simulation modeling.

3.1. Motivations to Develop a Visual OO Modeling Language For Modeling
Visualized information proved to be easier to manage than the textual information by
increasing the (human’s) working memory and processing resources. Visualization techniques
reduce the search for information, enhance the detection of patterns, and enable perceptual
inference operations [CAR99]. These properties of visual modeling make it preferable to
textual modeling. Visual languages facilitate not only ease of development, but also

communication of ideas and discovery of new ideas.

3.2 Drawbacks of UML for OO Simulation Modeling

The literature review in Chapter Two discussed the object-oriented paradigm and
related visual modeling techniques. The Unified Modeling Language (UML), as defined in its
specification, is a language for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling and other non-software

systems [OMGO0L1]. This section focuses on UML and its usability for simulation modeling.

3.2.1. Scenario Construction Scalability

Models, specifically simulation scenarios, are composed of instantiated objects and

links between them. To be used in simulation modeling, the language should offer a means to

58

group instantiated objects in a hierarchical manner. This grouping abstraction will be subject
to relations in an upper-level hierarchy.
UML’s emphasis is on the design of object types (classes) and relations between them.

UML defines three mechanisms to group other model elements: “package,” “subsystem,” and
“model” [OMGO1]. “Packages” are non-instantiable and can be applied to all kinds of UML
elements including instances. However, the semantics of packages only provide a name space
for the elements they cover. “Subsystems” may be instantiable or non-instantiable and are
used to provide a grouping mechanism for specifying a behavioral unit of a physical system.
The semantics of an instantiable subsystem are similar to the semantics of a composite class.
A composite class is composed of other classes forming a higher-level abstraction. Typically
composite classes are defined and then instantiated. A grouping mechanism is predefined and
not arbitrary, meaning that subsystems and composite classes are not usable for grouping
arbitrary instances. A “model” in UML is a description of a physical system at a certain level
of abstraction such as a use case, analysis, design, implementation, computational,

engineering, or organizational model. A UML “model” does not provide suitable abstraction

for grouping instantiated objects either.

3.2.2. Problems With Behavioral Diagrams and Code Generation in UML

Paige, Ostrof, and Brooke suggested “Forward and Backwards Generation” as one of
the four critical tasks required by users of modeling languages [PAIOQ]. It is a required ability
to transfer from visual to textual languages and vice versa. In order to achieve this kind of
ability, modeling structures of the language should be designed so that it will be easy to map
them to the structures of the textual language. To support forward and backwards generation
in a modeling language “Seamlessness” is suggested as a design principle, which involves

using the same abstraction in the model and in the textual language. UML is not seamless

59

since some transformation mechanisms are needed to generate code for behavioral models
[PAI00].

As detailed in Chapter Two, Bock explored the problems with behavior model
integration in UML in four basic areas [BOC99B]:

- Comprehensibility issues;

- Problems caused by emphasis on state machines;

- Problems with notation for data/object flow; and

- State machines do not have parameters.

These problems not only lead to misunderstandings and inconsistent models, but also

inhibit code generation.

3.2.3. Consistency Problems

“Consistency,” another design principle proposed, focuses on the purpose of the
language. Any feature in the language should address the purpose, otherwise it should be
discarded [PAIQO]. Paige, Ostrof, and Brooke also mention that it is difficult to determine
whether UML is consistent, since there are no precise design goals other than standardization
of modeling concepts [PAIO0]. As detailed in Chapter Two, it is questionable whether a

consistency check for UML can be automated.

3.3. Design Obijectives for the Visual Language for Generic Modeling

This section surveys the issues considered in the development of the proposed visual

modeling language.

60

3.3.1. General Modeling Pattern

This research follows the general design pattern for modeling. In almost every kind of
modeling environment, the analyst has a list of components and types of relations in a library
structure. Modeling is achieved by simply selecting from list of components, instantiating
them into the work area and setting allowable relations between them. Typically, these
components and relations may have attributes associated with them that must be supplied by
the analyst. For example, a digital circuitry design involves components like logic gates and
signal generators. A single type of relation, cable, connects these components. Internally,
these logic gates have propagation value that affects their timing behavior.

This thesis asserts that a UML-like object-oriented visual language can be used to
define these kinds of component and relation libraries. If the language is designed properly, it
should be possible to generate the modeling libraries for numerous problem domains. Then
the analyst can design scenarios using these libraries. Consistency checking and graphical
constraining might also be defined by the library and enforced by the development
environment.

The visual language should be capable of defining any visual modeling environment.
The specific intention of this study is to use the generic environment to provide a graphical
user interface for simulation tools. Figure 26 presents the integration of the study into
simulation process. First, libraries for the problem domain should be generated by means of
the proposed visual language. Then a generic software tool interprets the components,
relations and rules in the library and provides the scenario development environment. The
libraries and the scenarios are saved as XML documents to enable sharing. Finally, the
scenarios developed in the generic user interface environment are transformed into the textual

format required by the simulation tool.

61

Simmulation 1'ool

Simulation Input
o Simulation
& Input
F Y
Define components and Convert
association rules SCEnario
L J 4
Library of _ Scenario
Generic Tool ~ —* Generic UL ~——» Output
(XML) (XML)

Figure 26. Simulation Modeling
How to achieve and implement the transformation of the scenarios into desired format
depends solely on the purpose of the design, of which neither the VLGM language nor the
tool is aware. As will be explained in Chapter Five, the parser within the implemented tool
already has ability to load the design into memory, thus, an algorithm that can walk through

the scenario design might be designed for the desired domain.

3.3.2. Critical Tasks and Implications

As detailed in Chapter Two, Paige, Ostrof, and Brooke, list four critical tasks required
by the users of visual languages [PAI00]. The following list of critical tasks is determined to
meet the requirements of the proposed visual language.

- Type definitions,

62

- Reuse and library development,

- Hierarchical scenario design,

- Consistency checking of the models,
- System documentation,

- Forwards and backwards translation, and

Support for multi-domain modeling.

Type definitions involve structural definition of the abstractions used in the scenarios.
These definitions should be organized as a library to promote reuse. The scenario description
is the actual model where components are parameterized and the relations between them are
set. The language should also support implementation of automatic consistency check
mechanisms on scenarios. The model itself is considered documentation. By means of some
note taking mechanisms, auto-report functionalities should be supported for software tools.

To support simulation modeling the software implementation of the language
proposed should be able to translate scenarios developed in the language into the textual
definitions to be used in the actual simulation tool. The language does not necessarily address
the implementation of the translation, but it should be designed to allow that.

Different simulation application domains have different implementation requirements
leading the design trade-offs between general and domain-specific approaches. Because of
this, most industrial simulation tools on the market are domain-specific. However, this

research is intended to be used in variety of simulation application domains.

3.3.3. Design Principles

Based on the study by Paige, Ostrof, and Brooke, this study derived the following

design principles for the proposed visual meta-language [PAIOO].

63

Simplicity: As mentioned previously, since the language is intended as a
communication aid among humans, and between human and computer, simplicity is desired.
It eases learning, drawing by hand and creating software tools to support the language.
Simulation users may not be familiar to object-oriented modeling, thus, there should be no
unnecessary complexity and ambiguity in the language. The visual aspects of structures other
than its basic representation known as “secondary notation,” such as color variations and
shading should not be used to convey extra meaning.

Users of simulation tools want to design in a notation that’s closer to the application
domain, and do not want to be bothered with the low-level details of the simulation
implementation [CLA99]. In order to meet these requirements of the users, the simulation
tools should provide abstractions representing the real world entities.

Uniqueness: The language should provide only one good way to express every
concept to prevent ambiguities and redundant overlapping expressions in the models. For
instance, in a road map, existence of two different ways to represent a highway may cause
ambiguities.

Consistency: Any feature in the language should address the purpose. In a road map, a
line representing a gas pipeline does not relate with navigational purposes.

Seamlessness: Seamlessness involves using the same abstraction in the model and in
the textual language, which helps forward translation. Since the modeling language proposed
is intended to be used by analysts from different simulation application domains, the language
should introduce ways to describe abstractions. This way the language and the simulation tool
will use the same abstraction and forward generation will be guaranteed.

Scalability: The language should provide mechanisms to handle large-scale problems
without compromising the usability for small-scale models. Encapsulation and grouping

mechanisms should be used to provide better scalability.

64

Supportability: The language should be suitable to the development of computerized
tools.

Reliability: To provide reliable models the language should provide support for
consistency checks for the scenarios.

Space Economy: The models should take as little space on the screen or page as
possible to avoid distractions caused by searching and browsing.

Reusability: Component-based development and reusability is crucial for simulation

modeling. The language should support packaging mechanisms and library development.

3.4. Assumption on Behavioral Description

This study does not cover the behavioral description of the components used in the
models. The language assumes the existence of behavioral descriptions of core components in
the simulation tool, which is intended to run the scenario developed. The language only
addresses the static modeling of the parameterized components connected on the working

space.

3.5. Translation of Scenarios for Simulation Tool

To generate textual definitions as an input to a simulation tool, the abstractions defined
and used in the scenarios should match the abstractions defined by the simulation tool that
will run the scenario. The intention is that the simulation software vendor will provide
definitions of the core components and the visual language tool will provide a working area to
the analyst to select from these components, instantiate and parameterize them, set relations
and create a scenario. From this, the tool will provide the scenario for the simulation software.
The visual language supports the flexibility to define these abstractions but does not address

how to achieve the translation to scenarios.

65

3.6. Success Criteria

Since the visual language design does not allow persuasive quantitative analysis, the
language will be tested against the design principles with several case studies covering
different modeling domains. The following evaluation criteria are developed based on the
study by Frank van Harmelen, Manfred Aben, Fidel Ruiz, and Joke van de Plassche
[HAR96]:

Expressiveness: Were certain things impossible to express? Were some things
difficult to express?

Frequency of errors: What are the most common errors and what are the frequencies
of those errors. Why those errors occur? How can they be avoided?

Redundancy: Was redundancy present in models? Is it possible to identify different
types of redundancy? How can redundancies be avoided?

Locality of change: Do changes propagate through the models? If so, what are the
causes, and can they be avoided?

Reusability: Do the models enable reusability?

Reliability: Do models enable consistency checks? If not, why and how can the
inconsistencies be avoided?

Translatability: Are the models consistent and expressive enough foruse as an input
to a simulation tool?

Compatibility: What is the distribution of results of the above criteria? Does the

language favor any specific kind of simulation application domain?

66

3.7. Methodology Summary

The problems of using simulation tools with textual languages can be solved by means
of graphical user interfaces. This research suggests the use of an object-oriented visual meta-
language based on the general modeling pattern. The language is used to specify the
components and relations of the modeling domain. The discussion in this chapter implies that
the Unified Modeling Language cannot be used because of its insufficient support for
instances and inconsistent behavioral diagrams. If the language is strictly designed to have a
“transformability” property, a software tool can interpret the specifications and automatically
provide the design environment. The language assumes the existence of behavioral
descriptions of the components in the simulation tool, which is intended to run the scenario
developed. Hence, behavioral descriptions are excluded. The design principles and success

criteria for the language are also presented in this chapter.

67

4. FRAMEWORK AND LANGUAGE DEFINITION

This chapter presents the framework of the proposed solution and the definition of the
Visual Language for Generic Modeling (VLGM). VLGM is intended to be simple enough to
be implementable, but complex enough to represent any desired model. It can be extended to

have more capabilities, and has the potential to become a powerful generic tool.

4.1. Framework

The system proposed involves three main steps where the semantics and structures
may significantly differ. The first step is the specification of the components and relations
required in the modeling environment, which is achieved through use of the visual language,
VLGM. The second step involves using the automatically created modeling environment to
design scenarios composed of instantiated components and relations. The third step is the
invocation of the simulation to use the designed scenario.

VLGM consists of four data types and three relation types as shown in Figure 27 and
Figure 28. Data types are special types of classes of object-oriented paradigm. They are
abstraction mechanisms for a group of attributes representing data structures in the domain.
As stated previously, the modeling process involves instantiation of components and relations
in the work area. Therefore, VLGM, the first step in the framework, provides the structures to
describe these components and relation types. The scenario environment, the second step,
interprets VLGM specifications and provides instantiation mechanisms.

“Component Type” and “Relation Type” describe the components and relations in the
domain. Typically, the components have connection points called “ports.” The relations

connect ports. “Port Type” is used to describe ports in the domain. Once a port is specified,

68

different components may have the same type of port or as many as required. The Relation
Type specifies the type of an allowable connection between two Port Types. For example, in
the digital circuitry design domain, components such as “and,” “or,” and *“xor” gates have
two input and one output port. The relation that connects these ports is simply a cable.

“Data Type” provides a grouping mechanism for attributes. If a data structure is shared
between components, this data structure can be defined as a Data Type and the components
may contain a copy of that structure. In the networking domain, as detailed in Chapter Six, a
probability distribution is shared by both packet source and queue components, thus, it is
defined as a Data Type.

Three types of relations are defined between the data types of VLGM as shown in
Figure 28. Type extension is analogous to the inheritance relation of UML. In a type
extension relation, the child type inherits the attributes of its ancestors. If the type extension
occurs between component types, in addition to the attributes, the child type also inherits the
ports of the ancestor. The composition relation is a strong coupling between types. All of the
data types in VLGM can contain a Data Type and Component Types can contain Port Types.
The Relation Type, as explained previously, specifies two Port Types that it can connect. In a
VLGM diagram, this is represented as a Port Type Selection relation between a Relation Type

and the Port Types to which it relates.

A DataType ||9 A_PortType |[**A_RelationType |FF A _ComponentType

Anlnt:int ADouble:double | | AChar:char AFloal: float

AString:String | [ALong:long ABoolean:boolean .
; g g:long . - APortInstance:A_PortType

AnotherOne:A PortType

Figure 27. VLGM Data Types

69

Type Extension Composition Port Type Selection

> & >0

Figure 28. VLGM Relations

In the VLGM framework, two diagram types are used:

Library Diagrams: Before users can develop scenarios they must have libraries of
pre-built core components. Library diagrams are the formal specification of these components
and their relationships. This is where VLGM, the first step in the framework, is applied to
specify the modeling environment. Definitions in these diagrams are considered to be a
library. Dependencies between libraries may occur in large projects where some libraries may
import and use others. In essence, libraries are grouping mechanisms for the structures
defined inside.

Scenario Diagrams: This is the application of the second step of the framework. The
components and relations from selected libraries are interpreted and the modeling
environment is provided according to their specifications. Typically, a browser will help
locate the types of components and relations available. The user will choose components from
a list and instantiate them in the work area. Similarly they will select relation types and use
them to connect relevant ports. These scenarios can be designated as components to be used
in higher-level designs. For example, a library containing logic gates can be used to create a
two-bit adder scenario, and by defining this scenario as a component, four two-bit adders can
be used to design a four-bit adder and so on. This capability of the framework provides

scalability.

70

4.2. Visual Meta-Language for Generic Modeling (VLGM)

Languages are generally described by two different aspects: syntax and semantics.
Syntax refer to the rules for combining textual or graphical symbols to create valid sentences
in the language and does not deal with the meaning of the sentence. Semantics, on the other
hand, refers to the meaning of the valid sentences. Since VLGM is relatively small, the
description provided in this section presents the syntax of the language, with only passing

discussion of some semantic concepts.

4.2.1. Primitives

Primitive types are used as parts of complex structures of the language, namely Data
Type, Port Type, Relation Type and Component Type. Primitive types are named and have
data types. When displayed, the colon symbol is put between name and type. Table 6
demonstrates the primitive types, their applicable properties, and example usages.

Table 6. Primitive Types

Type Required | Explanation | Range Unit | Decimal Example
Float Vv Vv Vv Vv v x:float
Double v v v v v y:double
Integer v v v v age:int
Long v v v v index:long
Char Vv Vv Vv selection:char
String v v v name:string
Boolean Vv Vv isMale:boolean

71

The following properties of each type are used to enforce consistency of the values
during parameterization:

Required: Indicates a boolean value (true/false). When set to true, parameterization of
the type is mandatory.

Explanation: String value that explains the type.

Range: Specifies the value range of the type. A series of ranges can be defined for a
primitive type such as ages between 12..35 and 45..55. Ranges specify alphabetical order for
char types and list of selectable values for string types.

Unit: A string value applicable only for numeric types that explains the unit of the
value. Used to resolve possible ambiguities such as type named “time” which may hold
seconds or nanoseconds.

Decimals: An integer value standing for number of decimal digits, which is applicable

for float and double types only.

4.2.1.1. Numeric Types
Following table shows the values that numeric types can hold.

Table 7. Numeric Types

Type Size Description (smallest and largest positive values)

Integer | 32 bits | signed integer (-2.14e+9 --> 2.14e+9)

Long 64 bits | long signed integer (-9.22e+18 --> 9.22e+18)

Float 32 bits || floating-point number (1.402e-45 --> 3.402e+38)

Double | 64 bits | double precision floating-point (4.94e-324 --> 1.79e+308)

72

4.2.1.2. Boolean Type

Boolean is a special data type that may hold the value “true” or “false.”

4.2.1.3. Char Type

The language uses the data type “char” to store a single character. The
parameterization of char can be constrained by means of a predefined set of range values.
Ranges specify the alphabetical order for char types. For example, four answer choices of a

question can be specified by “a”..“d” and “A”.. “D.”

4.2.1.4. String Type

A string is a sequence of characters. Like char data type, parameterization of strings
can be limited by means of a predefined set of range values. Ranges specify list of selectable
string values for associated string type. For instance, the routing algorithm for a router can be
specified with the range of “EIGRP,” “RGRP,” and “RIP.” The user selects one of the string

values from the list.

4.2.15. Arrays

Array types can be defined to hold multiple elements of the same type. It is applicable
to all primitive and complex types. There is no constraint on the number of dimensions an
array may have. Each dimension is associated with minimum and maximum length values,
which are used to force the user to instantiate each dimension between these values. Example:

MyintegerArray[1,2][1,4]:integer

The array defined above is a two-dimensional array with specified minimum and

maximum dimension values. This means the user may instantiate this array as 1x1, 1x2, 1x3,

1x4, 2x1, 2x2, 2x3, or 2x4 matrices.

73

4.2.2. Complex Data Structures

The complex data structures of the language are actually specialized classes in the
object-oriented paradigm. Unlike classes in classic object-orientation, VLGM types do not
have behaviors. They are basically a collection of primitive types or other complex types.
Each complex type in the language has semantics and properties designed to achieve their

functionality.

4.2.2.1. Data Type

Data Type is the basic complex structure that groups attributes. Data types might be
abstract, which means this data type cannot be instantiated directly and will probably be used
as an ancestor to other data types in a type extension relation. A Data Type instance is
represented as a box with its name on the first line. Abstract data types are marked with a line
connecting top and right sides on the corner of the box as a triangle. The box also contains the

attributes of the data type as shown in Figure 29.

Sample AbstractSample
M yint:int MWy String: String
CharArray[1,5]:Char MyHoat: loal
StringArray[2.2][1.3]:5ring

Figure 29. Data Type

4.2.2.2. Port Type

Port Types contain a set of attributes and are represented with a box marked with a
circle in the top-left corner as shown in Figure 30. Port Types are used to define the
connection points of Component Types. For example, if the designer is dealing with digital

circuit design, they may need to define a common port type to be used with elements such as

74

gates, microprocessors or decoders. These elements will have different numbers of the same
type of connection point.

For visualization purposes, Port Types are associated with a port symbol property,
which is used to show the port of the component during scenario development. Figure 31

shows the list of symbols.

)
C SamplePort O AbstractPort

MyInt:int

Figure 30. Port Type

D Square
. Filled Souare

Dol

Filled Diamond

4 Triangle
‘ Filled Triangle

—]I

Figure 31. Port Symbols
4.2.2.3. Relation Type

Relation Types contain a set of attributes and are represented with a box marked with

an arrowed line in the top-left corner as shown in Figure 32. Relation Types are used to define

75

the relations that can connect ports of components together during scenario development. The
Relation Type has two special properties that specify the possible incoming and outgoing
ports to which the relation can connect. For example, in a digital circuitry design, the signal
ports of the logic gates can be connected with a “cable” relation, which is specified to connect
single bit signal ports. In the same system, bus ports cannot involve in a “cable” relation.

For visualization purposes, Relation Types are associated with head and tail arrow
symbols and line properties, which specify the appearance of the relation during scenario

development. Figure 33 shows the list of arrow symbols and line types.

SampleRelation = AbstractRelation

MyChar:char LongArray| |.5]:Long

Figure 32. Relation Type

O— Circle

.— Filled Cucle Flam
Diapond =020 0= = = = = = = Dazhed
Filled Diamond —— FHeavy

4— Trisngle @ *e==ssssssccsssces Dodted
4— Filled Tnangle - - Dashed & Dotted
é AITow

Figure 33. Arrow and Line Types
4.2.2.4. Component Type

Component Types contain a set of attributes and ports and are represented with a box

marked with a box in the top-left corner as shown in Figure 34. In the scenario development

76

phase, Component Types are presented either as an image (if associated with an image file) or
a generic box with port symbols. Components are instantiated directly and connected to each
other through their ports. If an image is assigned to a component type, the coordinates of the
ports of the component are defined relative to the top-left corner of the image. Otherwise, the
location of the port is selected as one of top, left, right or bottom sides of the box. As shown
in Figure 34, the list of ports and list of attributes that a component contains are separated

with a line.

- — \
:D:Snmr.ul eComponent TF AbstractC omponent

[ntArray[1.2][2.2]:Integer

Pl:SamplePortType P:SamplePortType
P2:5amplePortType -

Figure 34. Component Type

During Port Type assignment to Component Types, cardinality rules for connections
through these ports must be defined separately for each port. This design provides the
flexibility needed to use the same types of ports with different cardinality restrictions.
Cardinality rules specify the number of connections allowed through the port. Each port of a
Component Type has FROM and TO cardinalities. The FROM cardinality specifies the
number of allowed connections originating from that port and the TO cardinality specifies the
number of allowed connections incoming to the port. As shown in the following examples,
the cardinality specification notation uses *“..” between minimum and maximum allowed
connections and “n” to mean *“any.” These cardinality constraints are enforced in the scenario
design.

0.1 :Zeroorone

n : Any (can be zero)

1..n :Between1and “n” (can’t be zero)

77

3 s exactly 3

2.5 :between2and5

4.2.3. Relations
Three types of relations are defined between the complex types explained previously:

Type Extension, Composition, and Port Type Selection.

4.2.3.1. Type Extension

Type extension is similar to the inheritance relation in object-orientation and is
represented as a plain line with an empty triangle in the head pointing towards the ancestor
type. All four complex types, Data Type, Port Type, Relation Type, and Component Type,
can extend either Data Types or the same type as themselves. Multiple-extension, which
means extending more than one type at the same time, is allowed. Since Data, Port, and
Relation Types contain only attributes, type extension involves inheritance of these attributes
by the child type. In type extension between Component Types, in addition to attributes, ports
of the ancestor are also inherited by the child Component Type. Recursive type extension is

not allowed.

TE ahsiractiiabe

Proga gati cavdouly

Inpui gt Mo
Input_2-CatePor
Chutgsul; T alsor

/|

T N Giate

AR Gt

Figure 35. Type Extension

78

Unlike inheritance in object-orientation, attributes with the same name are not
overridden in the child type. Instead, two different attributes with the same name are
differentiated with “.” notation (involving the library name) in the context of the child type.
For example, the attribute named “Propagation” inherited by the “ANDGate” component type
in Figure 35 is accessed with the long name “LogicElements.AbstractGate.Propagation” in
the context of the “ANDGate.” A detailed discussion of accessibility through the type

hierarchy is provided in Section 4.2.4.

4.2.3.2. Composition

Composition in VLGM is analogous to composition as defined in UML. This relation
can be defined from Components, Ports, Relations, and Data Types to other Data Types,
which means that all of these complex structures can carry a Data Type as an attribute. It can
also be defined from Component Type to Port Type.

Composition is different from the aggregation relation in UML, where the relation is
actually a pointer to a data structure. The difference between aggregation and composition in
UML is that in composition, when the owner is deleted, the aggregate is not allowed to exist.
However, in aggregation the aggregate can still exist even if its owner does not. For example,
in the case of composition, if a car is destroyed that means its engine, transmission, and other
parts are also destroyed. In case of an aggregation, if a department is closed its employee can
be transferred to other departments of the company (the employee is not destroyed!). For the
purposes of VLGM, the aggregation relation is not relevant, since Data Types cannot be
instantiated directly if they are not owned or inherited by Components, Ports, or Relation
Types.

Composition between Component Types and Port Types are considered to be one-to-

one relations, since each port of Component, even if they are the same type of port, carries its

79

own semantics. Owner type side cardinality of a composition relation involving a Data Type
is always considered to be one, and the other side may either be one or specified by array
dimensions. This cardinality restriction on the composition is required for forward
transformability and consistency of the language. Figure 36 shows an example of composition

between components, ports and data types.

Prapertics
o

1 5 oy .
F'r-.-|-u.-r||q.--: | ropagation:ds bl

I iz B g

E]

Irpun_2 L Trgput_|

D GatePort

Figure 36. Composition

4.2.3.3. Port Type Selection

The Relation Type, as defined previously, specifies the type of an allowable
connection between two Port Types. In a VLGM diagram, this is shown as a Port Type
Selection relation between a Relation Type and the Port Types to which it relates. A Relation
Type’s FROM and TO Port Types are shown with this type of relation in Figure 37. The
figure indicates that a Relation Type called “Line” can connect to the incoming and outgoing
(TO and FROM) connections on Port Type “GatePort.”

To

“Line O GatePort

From

Figure 37. Port Type Selection

80

4.2.4. Accessibility Through The Type Hierarchy

Assume a type hierarchy as shown in Figure 38. Four Data Types, each located in
different library, are defined as extending one another. Two composition relations occur
involving Type_4, Type_3, and Type_1. Type_4 contains instances of Type_1 and Type_3
named T_1and T_3 (role names in the composition relation) respectively. This diagram raises
questions about how to access inherited attributes and whether attribute names can be

overloaded (defined the same in more than one class).

& Lib_2

Type 2

Var Zint|T 3

-.1.|“ 4

Var 4:ini

Figure 38. Accessibility Through Type Hierarchy
Accessibility in the hierarchy can be approached in two ways: using short or long
naming schemas. In a short naming schema, every variable is accessed locally with the direct

name. This kind of implementation does not allow inherited names to be used again. Another

81

problem that might occur is that if Var_1 is directly accessed in Type 4 (see Figure 38),
which Var_1 actually has been accessed is unknown: Var_1 related to T_1 instance, Var_1
related to T_3 instance (through extension) or the Var_1 inherited by Type_4 itself (through
extension). A long naming schema, which avoids these problems, is applied in VLGM. In this
schema, inherited attributes are accessed with their type names and type’s library name with a
“.” notation.

Lib 3.Type 3.Lib 2.Type 2.Lib 1.Type 1.Var 1 (Inherited)

T 1.Var 1 (Composition)

T 3.Lib_2.Type 2.Lib_1.Type 1.Var_1 (Composition-Inherited)

4.25. Case Definitions

Case Definitions are used to allow or disallow the parameterization of a group of
primitive or complex type attributes based on the values of other attributes of the complex
type instances. Using the long name dot-notation, attributes of complex types may be
referenced as a condition in case definitions. If the condition occurs, the attributes associated
with the case definitions get activated and vice versa. This property of the language is quite
useful if there are interdependencies between the attributes of the complex type.

A sample case definition is provided in Figure 39. Since the long name reference to
the condition attribute is generally large, the conditions associated with the case groups are
not designed to be visible in the type definition. In this example, the intention is to define
probabilistic distributions. The string named “Type” actually has the following set of range
values: “Normal” and “Binomial.” A normal distribution requires “Mean” and “Variance,”
but a binomial distribution requires “p” (probability) and “n” (number of occurrences) values
to be parameterized. So, when a normal distribution is selected, “variance” and “mean” values

are required and when a binomial distribution is selected, “p” and “n” values are required.

82

st bk o

Type:String

= CASE
Mean:floa
Variance: float

= END CASE

CASE

P:float
rind

= EMID CASE

Figure 39. Case Definitions

4.3. Scenario Environment
This section discusses the tasks and important issues in the scenario development

environment.

4.3.1. Generic Component Representation

If a Component Type is not associated with an image file, a generic box representation
is used. Ports are located on the sides of the box according to their place and symbol
specifications. Port names are also written next to them. In the center of the box, a component
name given by the user and component type name (smaller and in parenthesis) are located as

shown in Figure 40.

Qo

Marmomd

D Circle TCS‘»tCDmpDnCﬁt_O Square D

(Te sl omponent)

Triangle

W

Figure 40. Generic Component Representation

83

4.3.2. Consistency Checking and Graphical Constraining

By design, the scenario development environment has the ability to do automated
consistency checks. Table 8 lists the graphical constraining and consistency warnings that are
implementable.

Table 8. Consistency Checks and Constraints

Where? What?
Attributes |} Mandatory parameterization IsRequired property

Attributes J§ Range enforcements Range sets

Arrays Array dimension enforcements Minimum and maximum properties of each dimension

Relations J§ Limited to connect selected Port Types | FROM and TO port type selection

Ports Connection cardinality limitations Port’s FROM and TO cardinality properties

4.3.3. Scenario Environment Scalability

Every attribute value and port of the component in the design can be marked, (or
“mapped”), to be parameterized in a higher level of the hierarchical design. By mapping
attributes and ports of the components in the scenario, the scenario itself can become a
component. The new component will carry the mapped attributes and ports in it. This kind of
hierarchical design provides a grouping mechanism, thus, giving scalability to the scenario
development environment. An example of this kind of scaling is given in Chapter Six under

the digital logic case study.

4.4, Summary
In this chapter, a detailed discussion of first two steps of the proposed framework is
provided. The framework consists of three steps: the specification of the modeling domain,

the scenario design, and the transformation. VLGM is introduced with its primitive types,

84

complex types and relationships. A discussion of VLGM concepts is also provided. The
accessibility of attributes through the type hierarchy is explained with an example. The
implementable consistency checks and graphical constrains are listed. Finally, the process
named “mapping” is introduced as a tool providing scalability to the scenario development

environment.

85

S. IMPLEMENTATION

In order to demonstrate the capabilities of VLGM, a demonstration environment was

created. This chapter discusses the design of this environment.

5.1. Design Architecture

This section provides guidelines to understand the design of the implementation. As
stated previously, VLGM is intended to be simple enough to easily implement, but flexible
enough to model any system. The belief is that the implementation architecture discussed in
this section can be a basis for a larger-scale implementation.

The program has two major functions. One is used to develop VLGM designs that
specify components and their relations. The other is used to develop scenarios from defined
components and relations. Combined, these two areas provide the necessary environment to

create simulation scenario models.

5.1.1. Packages

The program is divided into three packages according to functionality as shown in
Figure 41. The parser package is responsible for classes of language abstractions, libraries
that contain and maintain these abstractions, a library handler to maintain multiple libraries,
and a parser for saving and retrieving of designs. The elements package performs
visualization of the library elements, the forms that maintains their properties, and consistency
of design. The GUI package organizes menus, toolbars, and manages user interaction in a

hierarchical manner.

86

— —

elements 1T

Figure 41. Packages

5.1.1.1. The Parser Package

The class diagram in Figure 42 is part of the parser package and forms the basis of the
abstractions in the language. All design elements, with some exceptions, in VLGM inherit
from the abstract class named “PrimitiveType.” It organizes common attributes and methods
for primitive and complex types defined in the language. Ranges for numeric types and char
types are implemented as separate classes, allowing multiple range definitions. Ranges for
string types are implemented as Java Vectors.

Complex types in VLGM compose groups of primitive types. The
“PrimitiveCollection” abstract class, inheriting from “PrimitiveType,” is designed to hold a
group of primitives and handle common methods over collections of attributes. “ArrayType”
and “CaseDefinitions” also contain a group of primitives, and thus they inherit from
“PrimitiveCollection.”

Since arrays have no limits on dimensions, a separate class for arrays named
“ArrayDimensions” is defined. “ArrayType” also contains a “sample” primitive. This sample

holds the type that is defined as an array. It allows arrays of complex types. “CaseDefinitions”

87

may have a group of cases where each case is linked to an attribute, which may be a complex

type.
CaseDefinitions ArayType
Primitive Collection
& Cheok Condition() Srecursive GetWalues()
an g "
@3 Used InCondition() SClone Atributes) iE;ﬁE;iﬂ:TEE;%
|z HameAwailable) = Sget Atribute AL Def() -] et DT ES
®Update Complex Typezagesi) WParsefndset Atributelues() P
RUpdate Complex Type Uzages()
% Delete FromConditions() L 7 WRetum Atributetvaluesi) Atk
o 1 : i s WParse fnd Create Dimenzions()
et Smallest Position() WRetumtribute Simple Definition)
i : +0umer ; #Calculate Mumber0f Bements()
gt Conditions String() Rget Atributes Tree Hode() et Array TypeNamel)
% Delete From Conditions() ‘getl:lim:n:ignssmng()
1 +Attrbutes | o 1.n +Amay Dimensions
+Conditions -n
— Frimitive Time Amay Dimenzions
L il hons - BhName : String Bhhin long
!}H‘tnhuteLo.ngName : String BhExplanation : String 1 Bhhx : long
Bhvalue © String BhisRequired : boolean eample Bhictual : long
Bhishalueset : boolean
RCheck Condition() ®Clone()
RCloner) R
+atribute one(]) RgetiALDeT
SgatiilDef() SgetiLDef() Wit Actuall)
WParse fndsetialues() Scheck Actuall)
1| ®Retumn‘alues)
ARetum Simple Definition,)
et Tree Hode)
WDizcoverTypel)
WDizcoverType String()
BGatHext'aluel)
SgetTable Row()
Sget Highest Position)
et Type Namei)
Set Explanation Text)
fj Sget Type Namen)

ItegerType || LongType DoubleType FloatType R CharType Stl'i"!EITYF'lE
By alue it Bhalue : long Q}‘b‘hl.ue 'd?Uble By alue : float BooleanType BB Elue : char | E\-'HUE : String
Q}Uni‘t : String Q}Llnit 1 String “}U“n ¢ String ﬂ}Unit : String ﬂ}‘\u‘hlue boolean %Range : eotor

i i BhDecimal : byte ; .
BhOecimal : byte
+Range it +Range
R +Range .y n N +Range n +Range
—Wﬁ lnlinange DoubleRange CharRange
QJN'EI.Z I-:-r?g Bhhvin : double Bhhvin : char
Bhhax : double Bbhax : char
EClone
‘get}ﬂ‘m?ﬂef() &Clone() Clonel)
®15\AlueInRange) Sget il Def) Shget¥hiLDet)
%z alue InRangel) %zhAlue InRange)

Figure 42. Class Diagram of Primitive Types

Figure 43 shows the complex types defined in the same package. “ComplexDataType”

inherits from “PrimitiveCollection” and type extensions are implemented with the

88

“Extensions” class that has a link back to “ComplexDataType.” Port, Component, and

Relation types are implemented in separate classes that inherit from “ComplexDataType.” In

addition to the attributes, Components have a collection of ports. “RelationType” is linked to

two ports that it connects and every port has a list of incoming and outgoing relations

involved.

Edarainr

% lanal

B e daa I ak wd)

S sl)

B e cbotin Ll il Etaraia g
Wi prranEsdndnd P eodst’y

(8]
+Eul

enilie

. :Ilnm-dump- _l.-l:l"'l:hmll

CampleslalaType

TypeHame ; Fhing
barlamcd b ol ami

e s Bstend caL i)

ST laneEutengional

P grms An deatEaten du dalua)
" abum Euten da dialusm)

" petEaeraio L)

ST indInE:dereiandin]

| i s e by .
B rvd Lo g il e iRl i)

5 v i L)

Bt bl gl pd ad)

W4 g kB i cnsin Lib v rg b pa
B pdabe Tppa Edmron conni’y

W0 ped b L o pl e Topp o b o

B niadta Froom Coned o na)

Wil il 180 red o refn ol asi
B jaata Extur caLayouki’ 1
B o aamsg pl vy ul) i
W 8 T oEocta rafam Larpearl)
W5 5 T oEocta raian L)

B Typea Exdun da o

FrimBweCellgchen

1
ERapping

|_‘ o oo el T i Frimidnee Noe WappiapTepa
oo pea rol bk Fil # : Shing 1 il L beg Del i i dien | SR
T, ﬂtl-F il | bialgdak
STlensFar] MR AR Y kP : b slan
L - Sl
P amndAn deetP o mea | eeE)
*RaumPorial) ®puifoalPiim i
"ﬂq-i.lllﬂq.rﬁ.mllﬂ;lqﬂlllllrﬂ +Campenaab b L L T
MgetP e Treahia el e Ll share
St arang i ML)
®Fin L on g me dATribyTe]) T | P At e)
SpomlairaF o) % ha el
7 Ty] q_} b RS il RO
SoaiTresHodel)
i ™ o (= k-
'll \ o/ \ gn
n | =Fars +Ihppfdﬁ.l'lrh|.h-: hlappy i ans
Fort Tk l'. j]
ety byte \ /
ﬂmnun Int b, + ot A+ el
B - IrE -
lr'rr;:u i | SrananieTpe
[- Bk oompea et : Bpliean
BT oardinabe Top - Ink
BCcardinatele® ; il e T ol i i)
— :fllnlﬁnd:h*ﬂoﬁlrﬂtmlnrﬂ
Bl T0F P el L s) T Pk ol P ML D ey
W e tF rem Limetart o ra S ngl) e :':-lﬂlml-:-ulh'-n'-ﬂmll:l
SpalTeLinatisradtiag] o — h'“":'i'"i"“'"i:l
o el v el o Al bl b . h'“":':'mm'i""ﬂ
SpaiP DR TS Troil I g e v)

SLPORT _Maapad]

.l':J L 11 I:I'_l
+FRied +fa
#FremCespactions #Tolenrachians
ny 1),: i

I'Lh

PelrbanTyme

'ill'ludﬁprlbll : byl

. BT ad Syl : byl

T [BhlineSymbal - bk T
.\-‘anl“uﬂlwn. Slenp d_r-'—"'_'-

B ToFedTypa : Shring +Capn e o

B hadsnd atFa Al sl
S b ki C o rva clia nl
S iF G

SgatT O

S R o _PALE P

ST 0_MAR)

*FindMapa edFoR)

% 1irdLan ghlarms dfsituia T ol wai)
“'lnﬂrmlrl:a-p-lrllrrrﬂﬂ'aﬂ;l

% it boatetd ap a0l

Sl cotilla po (]

Figure 43. Class Diagram of Complex Types

A scenario is composed of instantiated components and relations. As stated

previously, a scenario might be defined as a component and used in a hierarchical manner,

89

therefore, it inherits from “ComponentType” and contains a list of attributes and ports that are

mapped to be parameterized or connected at the higher level. When a scenario is used as a

component in another scenario, its mapped attributes or ports might be mapped again to a

higher level.

As shown in Figure 44, a library is composed of type definitions and a singleton class

named “LibraryHandler” which manages multiple libraries. Both of these classes work with

the “LibraryParser” that implements the required interface and uses the Xerces XML Parser.

Lisarp

IsMame | Sting
Landien | Shing
ol ; edbor
IeHami : Shing
prLaglut | B bean

alimp ot

W T Harra S asui)
gt ata Fyps)
et o Typs
Wyt el stian Ty

et ompartui Tred)

Wi vanais Tapa

Wy allibran ML)

WL gunlibran i)
egatT i abiodull)
‘uﬂ-llhlllﬁ-‘llmnﬂq

g atiisailableP ot Tro s
gabiaila) e sts Types])

Wi impar s
Wighla m s L bl i)

Wimg n il e d atad
“ulmlhnlrﬂlhrh:l
“'l.l;d.l'hhlpl:-hlun-nlj
Pl Tampl axTrpalien pex)
W0k bl FromiCo i i ma)

e lale Tanel)

oraaisbiata Type
‘n'.hrllPlrl'mlj
SwerieRelathinTypa]

S rie D o b Trpal)

e e L i)

Mo b & oo el o T i

Wy abiil refanbutab s omparanb
g b netanrburing M ol atin ra
‘lm-llllllll:mlﬁlrll-hrlil_'l
ygabawailableRal 3 srilam e}
PR e Topes])

Likrary#H ared ls1

| g LibrargHard s
EF ifanie

WyetlibrarwHardk
WgebianilainLi brargHarman])
g atlibraryHan s an ML
WasdLiniang
%d el niel i)
L L branias)
WLk bl B a0

T8 g o gl £ o rmpied Fypai

-'"-- l“'\-HJrr-i-I.|I|lr|1r\l.|-iq:
e ForeaieLibnarg)
) - g T Bl o) .
L eiLibang .
[Stiams Likiarg=asei
s PamEnan
“-w-;.mpinﬁ-m
N e e
"’Fmr'lrlri-l'fmibli-l:l
e T b ckH
-y Ry — = et
- — —
.._L% h."‘"--.. '\-\.____\--\- '\-_______\-
N gt —
. ., '\-\..._____. —
S T T e
M"'-\.\. e - -\-H-\"\-\.__ -_____\--_\-
e T ——_
e -
R s o Rt R S
. —
L Ecsnaria Tpw
)
pY e .-.\l slamponandTapsd 0 | sRelrfion Types o | +PodTrass
+DwnigrLi brary i, L3 !
A by RaliliaaTypa
' [ornpes paor] Thype s PortTron
l"t" ._.. _|'. .
k) / ~
l.... -". .lll. .---__
".. '.‘1 J .-.__.-'
Sy

ComplosDalaTyps

+hali Tpaaa?

Figure 44. Class Diagram of Library Management

The type hierarchy shown in Figure 42, Figure 43, and Figure 44 lack design layout

information. The program should be able to save and retrieve coordinates associated with

90

elements and relations as they occur in the workspace. A design is generally composed of
nodes and relations. In order to handle layouts, two classes are defined (see Figure 45), one
for nodes and one for relations. “NodeDesignLayout” keeps track of the top-left corner and
other special visualization requirements of a node. “RelationDesignLayout” is able handle

coordinates of multiple points.

RealabgnDesignlayou
l};._.m_:r':.mg LT
el ationTypeStr : String
P h BeRsl ation Ty pe
_.1. < +ExtendedType . BsSrowbonkaan 1
ComplenDalaTyps | #wmér 0.n | Exlansons | +'||I|t"i..-ruELd-uuLE‘i-"'“ﬂ”I'ﬁ“gT? Bl Pt 1
——— . ’:4_,_- : ssociabed_Sinng_Falatwe_Poinl_
i — +exiunsmnLin } U1 | &passnciated_Siing_Relatve_Pom_2
) ~. |
| et Dek)
I_I '\-\. +oomgas tnnLayoiul = "acﬂpnrlﬂ
01| geitieiPointl
*geiPaints)
'._ I:__.-!' r‘:l:l'l
-'nl +F.-\..--.|'-.;||15.:|.3.;F_ﬁr.|_;.:,.-u| +ToP g elactionlay out
MosdaDlesgnLayout ’
i ¥ - Pont2D +DeliradRetgionLayou
\ Spcrowaiinhuins - honkan
h SpcraPons - Bodglesn

Etodeslignment - byte
i BpbiodaTyps - byte
y HheMNodelayout Byl oepananiType

0.1 @Dt aRelation P o Ty pe
sedCompomant

Selthar - -~
et Def]) R -

[-
parsaPrapedies) H@l-'l'_l:n'x[l?
ezt oo atioad ———

Figure 45. Class Diagram of Design Layouts

5.1.1.2. The Elements Package

The elements package is responsible for visualization of the design elements and
applying user actions to the design. “GUI_Abstract_Structure” is an abstract class that
organizes nodes and relations of a graph. It contains a library, where the node and relation
representations are maintained as a type hierarchy. As stated earlier, the program has two

similar functional areas. As shown in Figure 46, “GUI_Library” (for VLGM design) and

91

“GUI_Scenario” classes (for scenario design) inherit from “GUI_Abstract_Structure.” This

design decision saves considerable effort in coding.

GUI_Library

| BRBounds Paint : Paintz0
nhiowing Distance © double
Behe GUI_Library

Create Composition()
WCreate G LI Liban)
WCreate Inhertance])

S Create Relation Port Typel)
WEvecite CreateTypes()
Find Complex TypeNodel)

@Parze Library Layout()

AbstractRelation

+0wner G LU Stractune

EIsSelemed : boalean
BhLine Points : Wector

B Line Point Areas : Wectar

B shapedrea : Area
Bhthe Line Stroke : Basic Stroke

0.n

+Relations

Create MewPaint()

®[ie|ete Relation Complex Tupe()
@0raw_Head?)

&0raw_Tail)

@DrawLines))

SFrom Shart Cuthdenu Action()
“et Paintable Head Tauch Paint()
Syet PaintableTailTouch Point()
et Paint Overline Point()

et Point DrerTet()

WGet Sealed freal)

BGet Sealed freaBounds()

et Sealed Canter))

et Stroke()

ByetTree Nodel)

HHeadhiowed By ()

1z Poirt InBoundz()

|z Foint Owerline Point()

s Poirt OwerText()

Wave Byl
@Parse Pointz nd Modes()
®Prepare Design Layouts()
%ReDraw)
Bcet_String_Association_Point()
W3hort Cuthienufetion)
WTailMoved By

WTo Short Cuthienudetion()
“ndo Prepare Design Layoutst)

GUI_fbstract_Structure

B Bounds Paint : Point2 0
nhdoving Distance : Double
B How Painting : boolean

AClear Selection])
WEvenuteClicked fetion()
WEcecuteCreate Relation Paint()

W ExecuteDeleter)
WEvecutehinrel)

WEcecutehdove Relation Paint)

W Executehione Relation Text()
WExente Selectiiith Dragged Box()
et Poirted Mode()

et Selected fealLogical Bounds()
et Selected Relation Text Sealed Bounds()
Sget Treehiodel)

Hnitializer)

shibanre Relation Pairt Aetioni)
shdove Relation Text fetion()
WshdavingAction)

s OvarBion)

s Overline))

Bz SelectionAction()

#0pen Properties Frame()
@Prepare Design()

@Prirt()

%R Oraw)

Szave Design)

Welect ALY

#ndo Prepare Design()

shelibrary | 1

Library
(from parser)

+FROM_Relations

GUI_Seenario

FCheck Conzsistency)

WCheck f Atrbutehpped)
#Check|f Porthppad()

BCollect Atribute Consistency Reportz()
Collect Port Consistency Reports()
#Create Connaction()
WCregte G| Seenariof)

@ Execute Create Component(l
%Find Component Mode()

et Node Of Pointed Port)

et Pointed Port()

Sz OverPort()

®ibrary Properties Changed()

+0mnerG U Stnactune

1| +theSeenaria

SeenanoType
(from parser)

Complex DataType
(from parser)

1 *['+#the Complex DataType

+Modes 0.0

+T0_Relations

+FRON

§

SN

Abstacthbde

Bz Selected : boolean
Bhhapesrea : Area

B4 - Point2D

BhLogical Bounds : Rectangle2D

S Create Basic Shapefreal)
SDelete Complex Typel)

% 3at Edge On Direction()
%3t Logical Bounds()
83t Logical Center()
SGetSealed freal)

%3t Soaled freaBounds()
SGatScaled Carter])

%3at Edge On Direction()
Shyet Tree Hode()

8z Paint InBoundsz()
WboveBy()

SPrepare Dezign Layouts()
SR Oram)

Short CuthenuActiont)

8 Jndo Frepare Design Layouts()

Figure 46. Class Diagram of Visualized Design

Class diagrams in Figure 47 and Figure 48 show the hierarchical design for each

possible node and

relation.

As seen in Figure

47,

an abstract class

named

“AbstractLibraryNode” inheriting from “AbstractNode” forms the basis of nodes for

components, ports, relations and data types in the VLGM design. In the scenario development

92

environment, the nodes are instances of user specified components, thus a single class named

“Node_UserDefined” manages visualization of nodes. To implement the visualization of the

ports of the components “Associated_Port” class is used.

AbsiraciNoce
VA
AbsiractLibranNode 3
| SChowatiibutes - boolean \
ROirawlcon()
BOrawlibrarshoden)

®sHamesvallablel
BoirganizetnstraciTvoeRalationsd

v <] Y
_r'l? ". &\
Made_PodTyps i 1..1 MNeede_DataType
Brreabe GLUIPoATypa() / "'.' BereaileGUIDataTpad)
I}
i

Mode_CompaneriType

Mode_RelalionType
@showPorls : boolean

SerealeGUIRelahonTyped

Boreate i UNC omponerd T e

Assncialed_Port +mehiode

elative TouehPair | PoirldD
eForType
oglcaiBounds - RactsngleZD

BkShapoimea Aes
rawkiny - boolean

A0 rawForl

W plirea)
etireaBoundsd
BOAT e
*eiEdgeonDireciond
GeilopscalBoundsi)
aeilogicalCanlen)
e ORT()

B3 efTowthPoint)
W=PoininBounds)
HzPORT_Mappedi)
WReDrawi

W\ pdate_Por_Pos@ond

0o
+Paris

Hode_LlsarDefined

 amcurraniTum ; byle
enemicComponeniHeight | Noal
eneticomponanfiidth ; fioal
sScenanio boolean
SsPottamerel alwePoins | Vector
SsPottames | Veckor
SsPofTypes ; vector
elatveTiteX : Aoat
plalweTiliey : Aoak
el TeeTillex | Nosl
EsRelatveTyaTille : ol
Esthalmags : Bufleredimags

B onstucPortsD
#erastel)serDefinedtodel)
BOrawlefa i)
"'Drtwlmtgll:l
WFincdAzsociatedPort)

| BgaiC entePoird@ ortCveFoinid

S el pnsistencyReporo

1| SpatPointaaort()

aEimagai

WP 0initverPoni()
WPropareCompenent)
WP repanePots Ofmaged
Sz atalligniments)
BIpdatedenencComponentl

ﬂﬂitﬂlEB[Bl‘lirlﬂﬂl

Figure 47. Class Diagram of Nodes

As shown in Figure 48, an abstract class named “AbstractLibraryRelation” inheriting

from

“AbstractRelation”

forms the basis of relationships in the VLGM design.

“Relation_UserDefined” manages visualization of relations in the scenario development

93

environment. The composition and port type selection relations have strings associated to the

head or tail of the visual representations. The visualization of these strings is managed by the

class named “Associated_String.”

AbstractRelation

AbstractLibranRelation

A

EsIialLID

EsINHERITANCE
ESRELATIONPORT

S COMPOSITION_DATATYPE
& COMPOSITION PORTTYPE

Relation_UserDefined

¥DiscoverTypel)

¥CreatellserDefinedo)
®DrawDefinedHeadTail()
¥yetConsistencyReport()

ﬁ 2\

Relation_Inheritance

®Createlnheritancel)

\>\

Relation_RelationPortType

EslsFromPort : boolean
&ShowTypeString © boolean

Relation_Composition

%CreateRelationPorTypel)

%ahnw(}ardinalit}f boolean
@shannleName . boolean

& RoleMarmeStr : String
&Explanation : String
&DataType_Cardinality © String
&DataType_Required : boolean
&PortType_FromCardinality : String
&PoType_ToCardinality © String
&PortType_XCoordinate © int
&PorType_¥Coordinate : int
&lsDataType : boolean
&tmpCompositionClone

SForceType FROMPort()
SForceType_TOPor()
%cetType FROMPor()
®cetType TOPort()

% sFROMPar()
®sTOPor()

®CreateComposition()

\ +Cardinality
=

1
1

+FoleMame

Figure 48. Class Diagram of Relations

94

14 +TypeString

Associated String

Q}AssnciatiunF’nint s Point2D
&_Relative : float

&Y Relative : float
&Shapehres : Area
&alue : String

$GetScaledAreal)
%GetScaleddreaBounds()

% getRelativePosition()
®setRelativePosition()
¥zPointinBounds()
hoveAssociationBy()
¥rssocistedPointMovedBy()
SReDraw)

5.1.13.

The GUI Package

The GUI Package consists of main user interface elements such as the main window,

tool bar, menu bar, and work area. Because of the two design areas mentioned earlier, the

“AbstractWorkArea” abstract class is defined to contain the same functionality for both

design panels. As shown in Figure 49, “LibraryWorkPANEL” (for VLGM design) and

“ScenarioWorkPANEL” classes (for scenario design) inherit from “AbstractWorkArea.” They

take mouse actions and implement design interaction by working with the “GUI_Library” and

“GUI_Scenario” classes in the elements package.

VLR Teal

B ainh

et SMLTosl])

S ssinamFilaamal
Hbinm

;nili#imFmpumj : p
i regramd

“':utnL-I:-ulu:l
W0 S o rurd o)
fzavE)
SoaEas
SCLOSED

A,

Litraryilis R REL
[EMODE_COMPOMENTVFE
BenDE_COMPOEITION
BybDDE_DATATYFE
MDDE_II\.HEP.I TERCH
ByMDDE_FORTTYPE
BiDbE_RELATIONFORTE
BMODE_RELATIONTYFE

S wtli branyio kFAHELD
%)

Figure 49.

Abgiaedina

WOGE : byla
B0 E_HORE
BowHE_SELECTION
BeDrapsdods ; byts
Bl rapid ode_CreataFoalatienFain
Ebuﬂndl_ﬂlwﬂ.lldl:nl‘qm‘l
B rapid o dhe_bdawe Foel alian Tt

bragiods_MaveTalactien
BsDrapMode_Salerl

Draptdada_Wane

awingP ek ; Poisk2D

el ke o | P B EAP SN - oD

Bl slasonsicticaddartsd : bralsas
ﬂlﬂtl.ﬁnnﬂnmrdmﬂ-‘"lmﬁ : Vackoa

"p-llrri:|
% Siton T 5ot e ctinn M o)
T e S e chi v il s C h aig e &0
Serma ura Tl kA Eveni)

T i D 3 i E v i)
%raursEnteiedErent])
Beppy 150 Essib d Ewit W) i
"rrqu:vlhl:vldhwrrla
ey 110 Pkt AW B
‘rrqu:vlﬁ.-lllnlﬂ&ul-lﬂ:l
B gve Desgni
%y siiacibinik

SN SR AP AN EL

EDDE_COMFOMERNT
BnDE_RELATION
Bycaluclad TypaClans - Cam phasD aka Tygsa

B 1S o B i 0 RP B RELD
‘1h|r|l::|

i baaryFro petiesChan ged])
B e S e o
Srglation Sl e cledl)

Class Diagram of Main Design Area

Figure 50 shows the relations between the remaining GUI elements of the program.

“AbstractWorkArea” contains a “WorkPanel” which, in turn, contains a “WorkSpace.” The

95

design elements are drawn by the “WorkSpace” class, which extends Java’s “JComponent”

class. “WorkSpace” overrides JComponent's “paintComponent()” method, which is

automatically called by the JVM in case of a refresh in the GUI, and manually triggered by
the program as a result of user design actions. “WorkPanel” implements zooming and
scrolling of the user’s design by means of the “TransformationManagement” class. Printing is

also implemented in "WorkSpace" class.

AR
4310 i L dh‘“a-..
K \ T
, T
b R
/ *Dwnerpanel e e - Brcanserf ANEL
1'“\‘ \ T G BafentsBreasi PANREL
L} i
b WG Al
, Siipdanar)
Y W b Uped st Saqusanc a)
.-"'f i, St lnlipdate Saguasia’y
LY
i A
athaWuisrk Faned | 1 p
preeT— 1 " ahiliimans SerolerPanal
Ukimane SorlerPAHEL
Bpnt Lagical lurd ey B EoroibrFonaragie - Beolanghelll
1\ kothafUIS gt iork Spmce Sel) :;nﬂoﬂwammzu
DU fbsirace_femectre | AtwGUiscius | HeWork Sacal) R 1 |RoCumenesaake : o
{from skemsnts) St (LI Sty b L 2
i et Ukimpte fomilen) | 4 UkrapaSoroder | 2P0
13 Byt diork S s Carwor) Sigselagged_Eweral)
{ st G| Bnpsene %m.n WlcaicePressed_Bvevil)
I-'I B pde Wil Syl o5 Foasa]_Eveents])
f = bl e
~1
3 & L /
". '|_
LY o Transtermae 41 L T T, —
! Trane Farmatisnbiaragement
4 | [tk e *Euﬂmmﬂ:ﬂ-\m
| vk Spoce Cusmeng Top - Thent
I - Bh CumensLeh : Taat
h.n:: . ..#,:nn ronema | Tk
: ts-:au'hmm:nmmm
- RwirseSoabeTranstenm - fefineTrassiom
-ampomersi} By Sty Traresfon: - Adding Trarcsfoem
St (1) Sy ires) Trarafomatee | B RERETSESHNTRASA0M © iseTansom
S .,.'“,mlm' i [T —
"-prrr-.r.:w:f '| SEaskmard saak Transtom
‘F"l'ﬁm Spainant medthaed
At e C e = S Egoknard s Trans o)
Sttty o oranicaled ihapel)
Primt 8 Fonsand S oabe Transdenmd)
. A Fonuand ShiMisd Shages)
R Fynman SN Trans o)
By sringe])

Figure 50. Class Diagram of GUI Elements

96

5.1.2. XML Format

XML (eXtensible Markup Language) is a markup language for documents containing
structured information. XML is a set of tags and declarations, similar to HTML. Unlike
HTML, however, the tags in XML are not fixed and users are free to develop their own tags.
With this capability, it is a meta-language for describing markup languages [HRO99]. The
data in an XML document is structured, which makes it easy to parse, handle, and share with
others. Saving the design as an XML document is achieved by a hierarchical walk through the
elements of the library. Parsing the XML definitions back is done by means of the XML
parser package provided by the Apache Software Foundation [APAO1].

The document in Table 9 demonstrates a sample library with a single component and
relation. Elements in the design are hierarchically located inside the “Library” tag, analogous
to the type hierarchy explained in Section 5.1.1.1, The Parser Package. The name of the
library (LibraryName) may be different than the name of the document. A tag is defined for
each type (Data Type, Port Type, Relation Type, and Component Type) in the VLGM.
Properties of these types become attributes to the tag. When a defined type is used, a new tag
with dot notation is defined. As seen in the sample, two defined port types are used in the
Component Type named “Objective_Node,” with tags defined by dot notation indicating the
library in which the port definition can be found. The layout of the design elements is also
included as an attribute to the tag with which it’s associated. The details and semantics of this
example are explained as a case study in Chapter Six. The full definitions of XML tags and

attributes used by the system can be found in Appendix A.

97

Table 9. Sample XML Document

<LIBRARY LibraryName="DECISION_ANALYSIS" Explanation="This library
implements decision tree">

<PortType TypeName="ParentsPort" Explanation="Connects this objective to
its parent objective" NodeLayout="91.0,214.0,true" Symbol="Triangle" />

<PortType TypeName="ChildrenPort" Explanation="Connects the objective
to its sub-objectives" NodeLayout="319.0,214.0,true" Symbol="Square" />

<RelationType TypeName="Connection" Explanation="Connects objectives to
its sub objectives" HeadSymbol="None" TailSymbol="None"
LineSymbol="Double"
FromPortType="DECISION_ANALYSIS.ParentsPort"
ToPortType="DECISION_ANALYSIS.ChildrenPort"
FromPortRelationLayout="-46.0,14.0,true"
ToPortRelationLayout="21.0,16.0,true" NodeLayout="197.0,70.0,true" />

- <ComponentType TypeName="Objective_Node" Explanation="" PictureFile=""
NodeLayout="195.0,412.0,true,true">

| - <Attributes> |

<String Explanation="This field is used as title in the MsExcel
Worksheet if applicable™ Required="True">Caption</String>

<String Explanation="This field contains detailed information about
the objective">Explanation</String>

<Float Explanation="Percentage value between 0 and 100"
Unit="Percentagevalue"
Range="0.0..100.0">LocalWeight</Float>

</Attributes>

<Ports>

<DECISION_ANALYSIS.ParentsPort Explanation="" From="1"
To="0" Left="-3" Top="-3" RelationLayout="10.0,18.0,true"
Value=",">SuperObjective</DECISION_ANALYSIS.ParentsPort
>

<DECISION_ANALYSIS.ChildrenPort Explanation="" From="0"
To="n" Left="-4" Top="-4" RelationLayout="3.0,19.0,true"
Value=",">SubObjectives</DECISION_ANALYSIS.ChildrenPort
>

| </Ports> |

\ </ComponentType>

| </LIBRARY>

98

5.1.3. Values in Complex Structures

When a scenario is constructed by instantiation of components and relations, the
associated attributes are parameterized. These values are saved in the XML document and
integrated as a “Value” attribute of relevant tags. String and char values are put in single
quotation marks, but numeric and Boolean values are used directly. All values defined in the
“Value” attribute of a XML definition must be delimited by double quotation marks.
Extension and composition dependencies between complex types make it difficult to save into
a single XML attribute. To solve the problem, a set notation is used. Table 10 shows how the
set notation is used for complex types.

For example, “{{{{_}{ 3+ {3 {3H{ OO OGO would
indicate a 2x3x2 array. Based on the type definition, these notations might occur recursively,
one inside another.

Table 10. Set Notation for Parameters

Type Notation

Each value and dimension is put inside { } and equal level

Array attribute dimensions are separated with a comma.

Attribute values are put in { } and separated with commas if the

Case case condition is currently true.

Attribute values are put in { } and separated with commas. If it
extends other types, the following schema is used:
{{Extended Attributes},{Owned Attributes}}

{{AttributeValues},{PortValues}}

schema is used. In case of extension, the following schema is
Component Type used:

{{{Extended AttributeValues} {Extended PortValues}},
{{Owned AttributeValues},{Owned PortValues}}}

Values of components and relations are separated with commas.
The following schema is used:

{{Component Values},{Relation Values},

{Mapped AttributeValues},{Mapped PortValues}}

Data Type, Port Type,
Relation Type

Scenario Type

99

5.2. The Application User Interface
As stated earlier, the application is composed of two design areas, thus, two different
file types are applicable: Library and Scenario. These are separated as seen on the screen-

shots of the tool bar in Figure 51.

Library
Buftons

h 1
b
Scenano
Buttons

Figure 51. Accessing Design Areas

5.2.1. VLGM Design

Figure 52 shows the VLGM design area. Four types of elements (Data, Port, Relation
and Component Types) and three types of relations (Composition, inheritance and port type
selection) can be chosen from the tool bar on the left. The elements and relations can be
browsed using the tree, and the design can be scrolled easily by means of the box-scroller.
Zoom infout buttons and the print button are put in the design area. The program is able to
print the design across multiple pages and the dashed lines in the design indicate the page
boundaries. The properties of the elements or relations in the work area can be edited by

means of shortcut menus that appear when they are right-clicked upon.

100

(Gomombevehper alol =l

Fils Tools Frisl Holp

Qo ¢« QW o @@ w0

Ebzimeeing & Coaitions _‘L!\. 5 inl -
™ RAMOCN LGOI _ELEMENTS =
= Explanatian : This Libvary comlaing F - ﬁ
&l Elemenis il
o= |l Connacions =) e ™
=1 TiE

DEOm = 8

Lo | e

——

A1

Figure 52. VLGM Design Area

5.2.2. Scenario Design

In order to work in the scenario development environment, relevant libraries should be
loaded. The user may then create a new scenario design. As seen in Figure 53, the user may
select components or relations from the libraries using the toolbar on the left. Right-clicking
over the components or relations will open a short-cut menu through which actions can be
performed (see Figure 54).

The consistency check over the design is triggered by the button with check icon. It
opens the form listing the inconsistencies as seen in Figure 55. This process involves
inspection of the component and relations in the scenario. The list will contain the mandatory

attributes that are not parameterized and the ports that are not connected according to their

101

cardinality constraints. Table 8 in Section 4.3.2. lists the graphical constraining and

consistency warnings that are implemented.

=101 =]
R ¢ O & @@ o @
al[e _hlgng
T !:Tnt:ﬁé::.‘;:n?u i i
|, g
o= B Connextiang
]
o D
l RARDOR_L OGHC_SCURCES D
M
v -
A e
£l | _:I

Figure 53. Scenario Design Area

—_‘D\"i} D

Mep Anrites

Figure 54. Component and Relation Short-Cut Menu

102

Consistency Report

X

ALUE REQUIRED for Z40R_0.RANDOM_LOGIC_ELEMENTS.2_Input_Ahstract_Gate Prog
ALUE REQUIRED for Z40R_1.RANDOM_LOGIC_ELEMENTS.Z_Input_Ahstract_Gate Prog

OK

Figure 55. Consistency Report

103

6. LANGUAGE EVALUATION WITH CASE STUDIES

In this chapter, four case studies for different application domains are presented. They
each emphasize a different aspect of the language. The first case study covers the domain of
digital circuitry modeling. In this study, a 16-Bit adder unit is built hierarchically using
random logic elements. The second case study contains a queueing model that can be used to
analyze the behavior of a computer network. The third case study demonstrates a system to
support decision-makers with an analysis process. Finally, the fourth shows how VLGM can
be used to design a combat scenario for use in military simulations. The full XML documents

created by the case studies can be found in Appendix C.

6.1. Digital Circuitry

This case study emphasizes the scalability of the language system. Logic elements are
defined as a VLGM library and then used to develop a scenario that implements a two-bit
adder. Four instances of this scenario are then used as components to develop a four-bit adder

and four instances of a four-bit adder are used to create a 16-bit adder.

6.1.1. VLGM Library Diagrams

To achieve the required functionality, three libraries are required: one for logic gates,
one for bus structures, and one for sources (a 1,0 generator). Figure 56 defines the logic
elements. “Signal_Port” is a port type for the connection points of the logic elements. The
relation type named “Line” is able to connect two ports of type “Signal_Port.” The “NOT”
gate has one input and one output port, where the “2_Input_Abstract_Gate” has two inputs

and one output. The “2_Input Abstract Gate” also has an attribute, a float named

104

“PropagationDelay,” associated with it. The “2_Input_Abstract_Gate” is defined as an
abstract component so it cannot be instantiated. The other gates, “2AND,” “20R,” “2NAND,”
“2NOR,” and “2XOR” extends “2_Input_Abstract_Gate.” Therefore, they all have two inputs,

one output, and a “PropagationDelay” attribute.

ﬂ-
_--

- bt

e T— Froam
L] e [rgput T Signal_Part (J\\

Trput _2 Chilpil
T} [rput Absiract Giate
apationll elay: ik
TEaawn / \ LRy Ol
TEr w4 WO

1R L7 MR

Figure 56. Logic Elements

Though not visible in Figure 56, the “PropagationDelay” attribute is limited to a range
of 0.0-200.0, must be parameterized (user must supply a value), and has a time unit of
nanoseconds. Each gate is associated with an image file, and port coordinates on the images
are provided. For the “Line” relation, the line type is set to “Plain” and head and tail arrows
are set to “None.” The forms associated with these specifications can be found in Appendix
B.

Figure 57 contains components for bus conversion, and defines a relation for
representing a bus line. For the “16BitBus” relation, the line type is set to “Double,” and head

and tail arrows are set to “None.” It can connect two ports of type “16BitBusPort.” Each of

105

the components named “1T0O16” and “16TO1” has 16 ports of type “Signal_Port” and one
port of type “16BitBusPort”.

Figure 58 shows the last VLGM design for this case study. It contains the signal
generators. They all have single output port and image files associated with them.

“Square_Wave” has a mandatory float attribute named “freq” with a unit type of MHz.

[Gl us

2 | sHinR usitort

Hris Hus
I
e TF aranl
Ik Sigmal_Por
|:Hignal Por fkmpgnal_Mort
:.:"Cl;:'l.l: Pl I:5ignal_Port
1Rl Por 2:Signal_Porl
|""\-=I:'I'.I Pari E8igmal_Fort
&% o . I:mpgnal_Fort
Shipnal Port
& Signal_Poil
T-Signal_Port
Grsigmal Port Hompmal_Fort
1 e Sigal _Port "‘"_"'I_}'II-I| Fort
11:Sigral_Pari lESgnal_For
12 Rigral Pari I i=Signal_Port
12 \;l:_..-“ Part | 2-Fignal_Fort
14: Sigrnal_Part | Esignal_Port
15:Rigrual_Poari l4-Signal_Fo
— | S=Sipnal_Port

Figure 57. Bus Structures

.
TEA btract_Gener abor

Chat: Sigmal Port

TF ﬂ‘;q;tlhl ¢ Wave
IF fi o : fhiat

Figure 58. Signal Generators

106

6.1.2. Scenario Design

Using the libraries defined in the previous section, a series of scenarios were
developed. First, a two-bit adder was built from the formulas derived from the truth table
shown in Table 11.

Figure 59 shows the design of the adder as developed using the demonstration
implementation tool. The ports marked in the diagram are mapped. When this design is used
as a component in higher levels, the component shows only these five ports as attributes.
These ports are named as “X,” “Y,” “CarryIN,” “Sum,” and “CarryOUT.” Mapping of a port
or an attribute is done through the short cut menus associated with components and relations.

The sample forms that are used to map ports and attributes are included in Appendix B.

Table 11. Two-Bit Adder Truth Table and Formulas

X Y CarryIN Sum CarryOUT

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
sum=(X 0 Y) O CarryIN i
CarryOUT = (X OY OCarryIN) O(X OY O=CarryIN) O

(=X OY OCarryIN) O(X O-Y OCarryIN)

107

The two-bit adder, once designated as a component, can be used in a new scenario
design. Figure 60 uses four two-bit adders to build a four-bit adder. Carryout ports are
connected to carry in ports from least through most significant bits. The remaining ports are
mapped with the following new names “X_0,” “Y_0,” “SUM_0,” “X_1,” “Y_1,” “SUM_1,”
“X 2,7 "Y_2,7“SUM_2,” “X_3,” “Y_3,” “SUM_3,” “CarryIN,” and “CarryOUT.”

CamryIM
M. _ . Suen

Camy Ul

D /

}7

Figure 59. Two-Bit Adder

IRitAdder D

el

JBicAdder r

2BitAdder 2 i

2iicAdder 3

Figure 60. Four-Bit Adder

108

Using a similar process, a 16-bit adder can be constructed as shown in Figure 61. In
Figure 62, the 16-bit adder is used with bus conversion elements and a source producing “0”
for carry in input of the least significant bit. Bus connections and the carry out port are
mapped, and the design is wrapped again as a component. Finally, the 16-bit full adder with

bus connections shown in Figure 63 is ready to be used in any future design.

IH nAddasi 1

Figure 61. 16-Bit Adder

=~ "\ | 777 o =
. L | i " =
- . '.-'"If’ S
-|l A
WL e

Figure 62. 16-Bit Adder with Bus Connections

109

I 0
-

OverAos Sum

[aBitFullAdder O

16 EAFulA dde

Figure 63. 16-Bit Full Adder

6.1.3. Results

Grouping and abstraction mechanisms proved to be the fundamental tools for any
engineering process to handle large-scale complex problems. Two kinds of grouping
mechanisms are provided with the language system. First, elements can be grouped under
different libraries and imported into scenarios that need them. Second, the scenario
environment has the ability to designate a scenario as a component and instantiate copies of it
in higher-level designs. These two abstraction tools make VLGM very effective at modeling
large systems. Both grouping mechanisms were used effectively in the case study leading to
the conclusion that the language has excellent scalability.

However, importing libraries into other libraries can introduce interlibrary
dependencies. These dependencies are invisible to the user, making it difficult to keep track of
them as the number of related libraries increase. To solve this problem and make VLGM
more complete, “Library Relation Diagrams” showing library dependencies may be needed as
an extension to the language. A sample notation for library relation diagrams is shown in
Figure 64.

The interdependencies also affect the locality of change. If a core library or a scenario

were changed, the library or scenarios that are using it might fall into an inconsistent state,

110

resulting in invalid models. Therefore, changes in design propagate through higher levels and
the analyst should be aware of that.

The library definitions are already reusable; once a component or a relation type is
defined it may be reused in scenarios as much as required. Scenario wrapping also allows the
reusability of scenarios. As demonstrated in the case study with adders, VLGM strongly

supports reuse.

Figure 64. Notation for Inter-library Relation Diagrams

6.2. Networking

A computer network is a collection of computers, servers, and other components
connected with some topology that allows the easy flow of data and use of resources between

one another. Typically, finite capacity resources are shared and demands upon resources are

111

managed as a queueing system. Communication lines between sub-networks, as one of the
main shared resources, are often subject to analysis. In many cases, since the network
architecture is complex, analytical solutions are not possible. Therefore, simulation models

based on queueing theory are used in analysis.

In this case study, a library is defined for modeling queue theory elements. Unlike the
previous case study, this design has a more complex attribute structure. The intent is to show
that various types of relations and complex attributes can be handled without causing

inconsistencies.

6.2.1. VLGM Library Diagrams

Figure 65 shows a VLGM library containing the basic elements needed to build queue
models. Three types of relations and five types of components are available. The “Source”
component type is able to produce user-defined packets at the rate specified by a distribution
attribute. The distribution of the target addresses of the packets is specified by the
“AddressDistribution” attribute. Target addresses lay between zero and
“NumberofAddresses” minus one. The parameters associated with the distribution function
depend on the distribution type and are defined using the case-structure of the language. The
“Queue” component type services the incoming packets with a service rate specified by a
distribution function. The “Sink’ component destroys incoming packets. The “Link” and

“DelayedLink” relations are able to connect ports of “Source,” “Queue,” or “Sink”
components from input to output ports.

In order to model duplex connections between network nodes, the “DuplexPaidLink”
relation type is defined on “DuplexPort.” The “Transceiver” component is able to transmit the

data coming into its input over a duplex port, receive the data from the duplex port and pass it

to its output port.

112

From

TR

© Output

Ot

IF

Source

PacketCell

Sizeint
Name:String
Explanation: String

AddressDistribution

D elayedLink

Delay:float

Link

* DuplexPaidLink

To Mont

Rate:

Propagation:float
CostPerTranster: float

hlyCost:Hoat
float

From

© InputPort

Chat

TF Queue

CueueSizelong

© DuplexPort

Transfer

:E':ll'l'l NEC eiver

ServiceRate | |

Distribution

Type:String
== CASE
Mean: float
Yariance:floa
== BEND CASE
== CASE
P:float
n:long
== BEND CASE
== CASE
a:float
== BEND CASE
== CASE
s:float
k:float
== BEND CASE

1r Router

RoutingAlgorithm: String

[0.15]
RoutingA ssociatiofy

R

mtingAdresses

LinkMozint
Address:int

Figure 65. Queue Elements Library

Routing between multiple nodes can be modeled by the “Router” component, which

extends the “Queue,” and thus has a queue capacity and service rate. The “RoutingAlgorithm”

attribute of the “Router” component can be set to one of “EIGRP,” “RGRP,” or “RIP” string

values.

113

6.2.2. Scenario Design

The scenario in Figure 66 models a node in a network system. It consists of most basic
elements. A source produces packets with a distribution and hands them to the queue. Packets
are processes by queue and transferred by the transceiver. The sink discards packets incoming
through the transceiver. The model in Figure 67 stands for a hub that routes incoming packets
based on their addresses. Both hub and node models are designated as components and
transceiver ports are mapped. The network scenario in Figure 68 is modeled using the hub and

node scenarios.

|

Trnefcr

w NodeTransceiver W ModeSink

Dy NODEQUENE o OCE T e

MNodeSource

(Souncci

Figure 66. Node Model

Irams e1ver

| ramsc civer 3

= :

Figure 67. Hub Model

114

4Hub_0

[4Huk}

L_DA_TA 2T AR
_ - HO0.
- - ‘_‘):‘ \ T -
. — - / ' " e
o - ’ \. . .
r ,/ v -
XMT \ -~
4 . m|
Chyenne V \ XM
R Ij/ k Hickam
E [Mode
AT NMT
WEAFB R amstein

(Mode)
[Mode)

Figure 68. AF Network Model

6.2.3. Results

In the previous case study on digital circuit design, all the components involved had
static behavior and were not subject to conditional behavior changes. Network modeling,
however, is more difficult when compared to the digital circuit design. In a typical network,
the routing process is one of the basic aspects of the system, and it must be modeled properly
to assure the validity of the analysis models. Since routing is a behavior, it is difficult to
capture its properties completely and efficiently using a static model. As seen in the design
diagrams, the hub model is not as intuitive as the node model. In this situation, in order to
capture the behavior of the system, the “RoutingAlgorithm” attribute is used. This attribute
can be set to one of “EIGRP,” “RGRP,” or “RIP.” These three types of behaviors are assumed
to exist in the actual simulation tool. During the scenario design phase, the user is asked to
select the behavior of the router. This is an excellent example demonstrating how to capture

the behavior of a system using static structures.

115

6.3. Sensitivity Analysis

This case study examines the transformability of the language system in the domain of
decision support. A decision making processes involve the identification of a main objective
and construction of a decision tree. Typically, the main objective is divided into
subobjectives. Each subobjective may also be divided into their subobjectives and so on. A
library containing a single type of component and relation specifies the decision tree model.
Nodes on the decision tree are associated with weighting values between 0-100, where the
total local weight values of all siblings of a node should be equal to 100. Using weight values,
calculations are applied over a decision tree to derive conclusions to support decision-makers.
The implementation of these calculations requires interpretation of scenarios, which is the
third step of the suggested framework explained in Chapter Four. This case study provides the
evidence that designed scenarios can be analyzed and interpreted to achieve calculations. In

other words, the scenarios can be transformed into desired formats.

Connection

From To

© parentsPort O ChildrenPort

Super Obj SubObj

:D:iﬁ')hj cctive_ Mode

Caption: String
Explanation:String
LocalWeight:float

Figure 69. Decision Tree Elements

116

6.3.1. VLGM Library Diagrams

Figure 69 is a VLGM diagram sufficient in scope to model the required functionality.
The “Objective_Node” component has two ports to connect it to its super and sub objectives.
The “Connection” relation connects these ports. The cardinality values of the ports are
designed to limit the model to a tree, where a node has only one parent but may have any

number of child nodes.

6.3.2. Scenario Design

Using the library in Figure 69, a decision tree with the main objective “buy the best
car” was built. As seen in Figure 70, the original generic component representation is not
sufficient for the visual requirements of this modeling domain. For the digital circuitry case
study, it was not a problem that the propagation values for logic elements in the design were
not visible. But for a decision tree, each box should contain the caption and the local weight

value so it is clear to the user how the analysis will be performed.

Figure 70. Decision Tree for Best Car

117

For demonstration purposes, a copy of the program was altered to include a caption and
weight in the node representation. The model shown in Figure 71 is easier to interpret and

develop by a designer.

Figure 71. Best Car Model with Adjusted Visualization

6.3.3. Interpretation of Scenario

Several different kinds of calculations and analysis are applicable over this kind of
decision tree. For the purposes of this research, the last step in the decision-making process,
sensitivity analysis, is implemented. The sensitivity analysis process helps determine how the

outcome of a quantitative analysis depends on its inputs.

6.3.4. Sensitivity Analysis Method
The leaf nodes of a decision tree are called the “attributes of alternatives.” The global
weight value for each attribute is calculated by the multiplication of local weight values of

nodes on its path. A set of global weight values for attributes is obtained. Each multiplication

118

must be normalized to a scale of 0-100 and the summation of the global weights of the

attributes will always be equal to 100.

For the sample tree, the set of global weight values shown in Table 12 is obtained.

Table 12. Attribute Global Weights

Horse Power

Gas Mileage

Transmission

Color

Style

Mileage

Year

Price

12.5

6.25

6.25

10

15

17.5

15

17.5

Assume that the attributes of three alternative cars are evaluated as shown in Table 13.

Table 13. Alternative Attribute Evaluations

Alternatives | HP GM || Trans. | Color | Style | Mileage | Year | Price Z Wig
Ford 90 60 80 80 95 80 80 80 82.25
Honda 80 70 80 100 90 70 90 100 |§86.125
Hyundai 85 80 80 65 80 95 95 90 85.75

The right most column in Table 13 shows the total scores of the alternatives by taking

into account the global weights of attributes in Table 12. To calculate this column, first, each

global weight value and related evaluation values are multiplied. In other words, each row in

Table 13 is multiplied by Table 12. Then, the multiplications in each row are added together.

It’s formulated as , where ‘w;’ Zwiei /100 and ‘e;” denote global weights and

evaluations, respectively. Then, it is easy to decide which car is better just by comparing the

total scores.

Sensitivity analysis involves changing the weight factors of a single node from 0 to

100 in increments. The process explained previously is re-applied after each iteration. As the

weight factor of the selected node is changed, the total of global weights of the selected

119

node’s siblings are adjusted so as to remain at 100. This case study asks the decision-maker
for the proportional values of the siblings so the weights can be adjusted. This new analysis
method has been proposed by Yucel Riza Kahraman [KAHO02]. For details of this and similar
sensitivity analysis methods refer to Kahraman’s research [KAHO02].

For each alternative, this method will result in 101 different evaluation values that can
be visualized on a graph. The graph will reveal how results vary by weight change in the

selected sub objective.

6.3.5. Implementation

To implement the sensitivity analysis process, extra coding was required to walk
through the nodes in the design, locate the root and leaves of the tree, find siblings of a given
node, and perform calculations. The implementation was based on the type hierarchy
explained in Chapter Five. As shown in Figure 72, a menu item was added to the short cut
menu for the user to start the process. Once the process is triggered, the program finds the
siblings and asks the user to provide proportion values. The total of the proportions should be
100 to preserve the consistency of the evaluation.

After the user provides the required values as shown in Figure 73, the algorithm
iterates and saves the captions and the global weights of the attributes (multipliers) into a text
file. The user can open an Excel worksheet that has fields for alternatives and macros to read
the multipliers and prepare the graphs as shown in Figure 74 Figure 75.

Figure 75 shows the scores of alternatives as the importance of mileage increases from
left to right. This graph reveals that Honda scores higher if the importance of the mileage is

low, but Hyundai scores higher if the importance of the mileage is high.

120

Figure 72. Adjusted Component Short-Cut Menu

Paramaterize Price

Figure 73. Proportional Values for Siblings

121

wpodt Emcel - Decsionsnalysis.uls

L 0o ook g koo Pukiphers G Show Greph (] Show Bt

C11 - -|
Alternatives HorsePower GasMilage Transmission Color Style Milage Year Price
Fard w 80 & 2 o Y - 41
Hiémiida 1] | | -1 100 | | m “ | 100
Hyundsi £ _ B0 B0 & a0 25 #w

Figure 74. Alternative Attribute Evaluation

100 E
-

{

3
£ w0
80
o
80
50
40
a0
20
10
0

0 5 10 15 20 25 30 35 40 45 50 55 60 G5 7O 75 80 85 90 95100

Iteration

Figure 75. Sensitivity Analysis Graph

6.3.6. Results
This study revealed that the transformation of scenario diagrams is feasible.
Transforming scenarios into a new format or applying calculations over a design requires a

good understanding of two concepts: First, the underlying structure of the language

122

implementation as described in Chapter Five must be understood and second, the structure of
the libraries which define the components, relations, and other data structures involved must
be understood.

This study also reveals a visualization problem. The generic box structure for
Component Types may be improved to hold values of desired (marked) attributes associated
with the component as shown in Figure 76. This can be implemented by adding a boolean
property to the definition of primitive types. Refer to Section 4.2.1 for the properties of

primitive types. This addition to the language would improve its use of space.

i i
Eupc O Hecive Eupc O Hecive
POWER Objective Node_|
L-Weight =25.0 (Ohecive_Mode)
SubHectver SubDHeclver
O O

Figure 76. Attribute Value Visibility

6.4. Mission Planning

This case study demonstrates whether the language is suitable for simulation systems
that the DoD employs. In a typical combat simulation, missions, weapons, and tactics are
modeled. These models are executed in the simulation and results are analyzed. The
descriptions of players in these models are complex and detailed.

In order to simplify modeling, some abstractions can be made. For example, the user
does not change the detailed description of an F-16 frequently. Therefore, some attributes
might be suppressed and relevant attributes and relations can be abstracted to ease the
modeling process. This case study explores the applicability of VLGM the domain of combat

simulations.

123

They miall ﬂ'!.'l'-ugdl

LR

]

n{!l.l] F

THradar

TFRCN235

-_H_H_‘_‘_'_"‘“—'—-—r_. LEa barractAineralt

MissionT ype:Siring
Livad:String

4L/q For i abiodiSiE & hik
1
Ling T

MiszionLaog
TOT:Btring

Action:Sring

Fram

= ammiannes tion

Q Commilart

To
Fram Target
1_"!":|.'\-|'|||H|J|:|'.|':||;:|.'I O packaT AT
I"D"l'. ormmurss aticndharmel
Tis arpet
PrimearyFrag Saring
Sevand aryFreg:Siring
T Emmser gemc vFrog - Siring
= PrimaryTargel | et e’ =
Frain

g
LFa baractT arget

L geal srget |t

Coordinates:String /

LF Ground Target

Cordamalics FI""F T Patrolfone

Coardaisatei] I n | Siming

Figure 77. Mission Planning Library

6.4.1. VLGM Library Diagrams

The VLGM diagram in Figure 77 contains the basic elements for mission planning. It

specifies different kinds of aircraft and targets, a radar, and a communication channel. An

124

aircraft can be connected to targets through “PacketTarget” ports either with the
“PrimaryTarget” or the “SecondaryTarget” ports. The radar and aircraft can be connected to
communication channels. Each of the components defined in the library are associated with

an image file.

6.4.2. Scenario Design

Figure 78 shows a simple scenario. F-16 and F-4 formations are given primary and
secondary sea and ground targets respectively. The Gulf flies an air command center mission
in the same zone as the search and rescue aircraft, CN235. Radar control is provided and all

aircraft use the same communication channels.

Figure 78. Mission Scenario

125

6.4.3. Results

The study shows that working with images provides a modeling environment that is
much more intuitive. This capability of the language resolves visualization problems for many
modeling domains. This kind of pictorial representations is especially valuable for modeling
domains working with real life objects such as the combat simulation systems that the DoD
employs. Although the player-oriented data structures of most DoD simulation systems are
very complex, some abstractions can be made to simplify the design. Unnecessary details can
be hard-coded and only frequently changed attributes can be included in VLGM library
designs. As the case study on sensitivity analysis showed, conversion of scenarios to other file
formats may be required. An algorithm for combat simulations that converts the scenarios
developed in demonstration tool into textual definitions for desired simulation tool is

applicable.

6.5. Summary of Case Studies

In this chapter, four case studies are demonstrated. The first case study about digital
circuitry modeling showed the scalability of VLGM by hierarchical design. It also suggests
that interdependencies between libraries can be visualized by library diagrams. The second
case study on network modeling shows an example of behavioral specification by static
structures. The third case study demonstrates the transformability of VLGM designs by an
implementation of a sensitivity analysis method. Finally, the fourth shows how VLGM can be

used to design a combat scenario for use in combat simulations.

126

7. CONCLUSIONS

7.1. Evaluation
This section presents a discussion on the usability of VLGM based on the success

criteria suggested in Chapter Three.

7.1.1. Expressiveness

The language has the power of the object-oriented paradigm, which makes it possible
to model complex structures efficiently by means of its tools such as extension, composition,
and instantiation. But the language makes an assumption that limits its domain to modeling
static aspects of systems. It does not attempt to model behavior. As the case study in network
domain demonstrated, it is difficult to model the behavior of a system using VLGM. The
designer can always make assumptions about the presence of certain kinds of behaviors, and
the behavior of a component in the system can be parameterized from a list of possible
behaviors like the parameterization of an attribute. As presented, however, it can be

concluded that behavior of components is difficult to express with VLGM.

7.1.2. Frequency of errors

The most frequent error that occurred in the design process was caused by
interdependencies between libraries. When a design in a lower-level library is changed, it
affects the higher-level models and sometimes invalidates them. This kind of error is difficult
to avoid and requires experience with the language and object-oriented concepts. In the
scenario development environment, the graphical constraining and consistency check

capability provided by the VLGM definition disallows most types of errors that might occur.

127

7.1.3. Redundancy

It is believed that the existence of redundancy in a design depends mainly on the
designer’s experience with object-oriented concepts and the modeling domain in question. A
lack of perspective over the modeling domain might cause redundancy in models.
Unavoidable redundancy was not encountered in any of the studies. VLMG is very simple
with four types of elements and three types of relations. This simplicity reduces the chance of

redundancy in designs.

7.1.4. Locality of change

As explained in the case study on digital circuitry design, if a library or scenario is
changed, the libraries or scenarios using it may fall into an inconsistent state, resulting in
invalid models. Changes in designs propagate through higher levels and the analysts should

be aware of that.

7.1.5. Reusability

The VLGM library definitions are already reusable by design. Once a relation or a
component is defined, it may be reused in scenario diagrams through instantiation. The
language’s tool allows wrapping a scenario for use in higher levels of the design process,
which enables reusability of scenarios. Therefore, reusability of both library elements and

scenarios is assured.

7.1.6. Reliability

Consistency checking of VLGM library diagrams can be achieved by checking the

design with the language specification. For scenarios, the library definitions allow consistency

128

checking. The accuracy of this consistency check depends on the user’s specifications in the
library diagrams. For example, if the user defines a float attribute for “probability” but does
not set its range to be between 0 and 1, the consistency check of its parameterization won’t
produce an error if it has been set out of range. In general, however, reliability is enhanced by

the simple, yet flexible rules of VLGM.

7.1.7. Translatability

VLGM library diagrams are interpreted, and the components and relations specified
can be used in scenario diagrams. The implementation of the software tool as part of this
research is itself evidence for the translatability of library diagrams. Although it might be
difficult for domains with complex data structures, translatability of the scenario diagrams is

feasible as presented in the case study on sensitivity analysis.

7.1.8. Compatibility

The language is compatible with most types of modeling domains. Some limitations
occur on domains where the user needs to define the behavior of the components or the
relations involved. It can be concluded that the language is fully compatible with those
domains where the static layout of components and the parameterization of attributes are the
most essential design tasks. As shown in the case studies on mission planning and digital
circuitry, working with images increases usability and compatibility with a closer match to

real life representations of the components involved.

129

7.2. Future Study

This research assembles ideas from various disciplines such as simulation,
visualization, modeling, language theory, and software engineering. The study is open to
developments and new ideas in these disciplines.

VLGM is designed to be as small as possible to show the applicability of the proposed
solution. As a meta-language, it holds the potential to become a very generic tool for the
modeling community. However, it lacks behavior modeling. The extension of the language
with behavior modeling would make it even more powerful — if different kinds of behavior
modeling approaches are integrated.

Although this generic approach may solve the problems of textual simulation systems
that the DoD employs, more research is required on the component-relation structure of these
systems. Once the VLGM libraries and conversion algorithms are developed, the designed
scenarios might be converted to the desired simulation tool. If the same VLGM libraries are
used and different conversion algorithms (for each different simulation tool) are developed a
scenario design may be converted to desired combat simulation tool. This approach may
enable interoperability between combat simulation tools and crosscheck of simulation results.
Another study may focus on integration of a map background in the scenario development
environment, so that, location parameters (coordinates) of components may be automatically
set by position of the component over the map.

VLGM might also be viewed as a specific form of UML. A further effort might focus
on establishing common grounds between VLGM and UML. Extension of UML with the

functionality proposed in this research would be very useful for the simulation community.

130

7.3. Summary

This research started with the problems of using simulation tools with textual
languages. The solution for these problems is graphical user interfaces that allow the user to
model the system as a graph that consists of components and relations. The types of
components and relations depend on the domain of interest. However, a meta-language that
will be used to specify the components and relations can be designed. If the language is
designed to have the “transformability” property, the specifications made with that language
can be interpreted by a software tool automatically. As a result the tool will be able to provide
a modeling environment for the specified domain.

This kind of approach not only solves the problems of simulation tools, which lack
user interfaces, but also provides a generic user interface for any kind of modeling domain.
This study surveyed the applicability of this idea. A visual language named “Visual meta-
Language for Generic Modeling” was designed and implemented as a software tool. The
software tool proved the transformability of the language and showed the feasibility of the

component-relation modeling approach.

131

[AND9S8]

[APAO1]

[BANO6]

[BANO7]

[BANO9S]

[BAROO]

[BOC97A]

[BOC97B]

[BOC98A]

[BOC98B]

[BOC99A]

[BOC99B]

BIBLIOGRAPHY

Andries, Marc, Gregor Engels, Jan Rekers, “How to Represent a Visual
Specification,” Visual Language Theory (Book after Workshop on Theory of
Visual Languages -TVL ‘96 edited by Kim Marriott and Bernd Meyer, pages
245-259, Spring-Verlag New York, 1998, USA.

The Apache Software Foundation, Xerces version 1.3.0, 2001, Online
Document, http://xml.apache.org/xerces-j/index.html

Banks, Jerry, Randall R. Gibson, “Getting Started in Simulation Modeling,”
IIE Solutions, Vol 28, pages 34-39, November 1996, USA.

Banks, Jerry, Randall R. Gibson, “Simulation Modeling: Some Programming
Required,” 1lE Solutions, Vol 29, pages 26-31, February 1997, USA.

Banks, Jerry, Randall R. Gibson, “Simulation Evolution,” IIE Solutions, Vol
30, pages 26-30, November 1998, USA.

Bargiela, Andrzej, “Strategic Directions in Simulation and Modeling,”
Conference of Professors and Heads of Computing, UK Computing Research
Strategy CPHC Meeting, Manchester, 6-7 January 2000.

Bock, Conrad, James Odell, “A More Complete Model of Relations and Their
Implementation,” Journal of Object-oriented Programming, Vol 10, pages 38-
40, June 1997, USA.

Bock, Conrad, James Odell, “A More Complete Model of Relations and Their
Implementation: Mappings,” Journal of Object-oriented Programming, Vol 10,
pages 28-30, October 1997, USA.

Bock, Conrad, James Odell, “A More Complete Model of Relations and Their
Implementation: Roles,” Journal of Object-oriented Programming, Vol 11,
pages 51-54, May 1998, USA.

Bock, Conrad, James Odell, “A More Complete Model of Relations and Their
Implementation: Aggregation,” Journal of Object-oriented Programming, Vol
11, pages 68-70, September 1998, USA.

Bock, Conrad, “Three Kinds of Behavior Models,” Journal of Object-oriented
Programming, Vol 12, pages 36-39, July/August 1999, USA.

Bock, Conrad, “Unified Behavior Models,” Journal of Object-oriented
Programming, Vol 12, pages 65-68, September 1999, USA.

132

[BOCO0]

[BOS94]

[CAR99]

[CHET6]

[CLAY9]

[CRE98]

[FOW99]

[GAMO5]

[GOU99]

[GRE96]

[HAR96]

[HEN97]

[HRO99]

[JAC99]

Bock, Conrad, “A More Object-Oriented State Machine,” Journal of Object-
oriented Programming, Vol 12, pages 36-38, January 2000, USA.

Bossel, Hartmut, Modeling and Simulation, A.K. Peters Ltd, 1994,USA.

Card, Stuart K., Jock D.Mackinlay, Ben Shneiderman, Readings In
Information Visualization, Using Vision To Think, Morgan Kaufman
Publishers Inc, 1999, San Francisco, California

Chen, Peter Pin- Shan, “The Entity-Relationship Model — Toward a Unified
View of Data,” ACM Transactions on Database Systems, Vol 1, pages 9-36,
March 1976.

Clarke, Philip, “Simulation Concert Party,” IEE Review, Vol 45, pages 82-84,
March 1999, USA.

Creighton, Oliver, “Questions, Options, and Criteria: Elements of Design
Space Analysis,” Design Rational Seminar Slides, July 23rd 1998, Online
Document, http://wwwbruegge.in.tum.de/people/creighto/stud/DR98/QOC

Fowler, Martin, Kendall Scott, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, Addison-Wesley, 1999, USA.

Gamma, Eric, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley Longman,
1995, Massachusetts.

Goucem, Ali, “Multi-Domain Modeling and Simulation,” IEE Review, Vol 45,
pages 85-87, March 1999, USA.

Green, T.R.G., M. Petre, “Usability Analysis of Visual Programming
Environments: A ‘Cognitive Dimensions” Framework,” Journal of Visual
Languages and Computing, Academic Press Limited, Vol 7, pages 131-174,
No 2, 1996.

Harmelen, Frank van, Manfred Aben, Fidel Ruiz, Joke van de Plassche,
“Evaluating a Formal KBS Specification Language,” IEEE expert, Vol 11,
pages 56-62, February 1996.

Henderson-Sellers B., D. Firesmith, I.M. Graham, “The Benefits of Common
Object Modeling Notation,” Journal of Object-Oriented Programming, Vol 10,
pages 28-34, September 1997, USA.

Harold, Elliotte Rusty, XML Bible, 1999, IDG Books Worldwide, CA, USA.

Jacobson, Ivar, Grady Booch, James Rumbaugh, “The Unified Process,” IEEE
Software, Vol 16, pages 96-102, May/June *99, USA.

133

[JAGOO]

[KAH02]

[KAO97]

[MAR98A]

[MAR9SB]

[MODO0]

[MUL97]

[NARYS]

[OMGO01]

[PAIOO]

[RUMO1]

[RUMO9]

Jager, D., “Generating Tools From Graph-Based Specifications,” Information
and Software Technology, Vol-42, pages 129-139, No 2, 2000, Spring-Verlag
New York, USA

Kahraman, Yucel Riza, “Robust Sensitivity Analysis For Multi-Attribute
Deterministic Hierarchical Value Models,” MS Thesis, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, AFIT/GOR/ENS/02-10, March
2002, Unpublished Document

Kao, Diana, Norman P. Archer, “Abstraction in Conceptual Modeling,”
International Journal of Human Computer Studies, Vol 12, pages 125-150,
January 1997, USA.

Marriot, Kim, Bernd Meyer, Visual Language Theory, Articles of Workshop
on Theory of Visual Languages (TVL 96), 1998, Spring-Verlag New York,
USA.

Marriot, Kim, Bernd Meyer, Kent B. Wittenburg, “A Survey of Visual
Language Specification and Recognition,” Visual Language Theory (Book
after Workshop on Theory of Visual Languages - TVL ‘96 edited by Kim
Marriott and Bernd Meyer, pages 5-85, Spring-Verlag New York, 1998, USA.

Modelica Association, Modelica Specification Version 1.4, 2000, Online
Document, http://www.modelica.org/documents/ModelicaSpec14.pdf

Muller, Pierre Alain, Instant UML, Wrox Press Ltd, 1997, UK.

Narayan, N.Hari, Roland Hubscher, “Visual Language Theory: Towards a
Human-Computer Interaction Perspective,” Visual Language Theory (Book
after Workshop on Theory of Visual Languages -TVL ‘96 edited by Kim
Marriott and Bernd Meyer, pages 86-128, Spring-Verlag New York, 1998,
USA.

Object Management Group (OMG), UML 1.4 Specification, 2001, Online
Document, http://www.omg.org/technology/documents/formal/uml.htm

Paige, R.F., J.S. Ostroff, P.J. Brooke, “Principles For Modeling Language
Design,” Information and Software Technology, Vol 42, pages 665-675, July
2000, UK.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy,
William Lorensen, Object-Oriented Modeling and Design, Prentice Hall, 1991,
USA.

Rumbaugh, James, Ivar Jacobson, Grady Booch, The Unified Modeling

Language Reference Manual, Addison Wesley Longman, 1999,
Massachusetts.

134

[SCA96]

[SHU96]

[SHU97]

[STE99]

[TAY99]

[WEB96]

[WINO9S]

Scaife, Mike, Yvonne Rogers, “External Cognition: How Do Graphical
Representations Work?,” International Journal of Human-Computer Studies,
Vol 45, pages 185-213, August 1996, United Kingdom

Shum, Simon J. Buckingam, “Representing Hard-to-Formalize,
Contextualised, Multidisciplinary, Organizational Knowledge,” Workshop on
Knowledge Media for Improving Organizational Expertise, 1st International
Conference on Practical Aspects of Knowledge Management, Basel,
Switzerland, 30-31 October 1996, http://ksi.cpsc.ucalgary.ca/AIKM97/sbs/sbs-

paper2.html

Shum, Simon J. Buckingam, Allan Maclean, Victoria M. E. Bellotti, Nick V.
Hammond, “Graphical Argumentation and Design Cognition,” Human
Computer Interaction, Lawrence Erlbaum Associates, Vol 12, pages 267-300,
No 3, 1997.

Stevens, Perdita, Rob Pooley, Using UML, Addison Wesley Longman, 1999,
Massachusetts

Tayfun, Avni, “Simulation Modeling Primer,” 1IE Solutions, Vol 31 No 9,
pages 38-41, September 1999, USA.

Webster’s New Universal Unabridged Dictionary, Barnes & Noble Inc.,
Random House Value Publishing Inc., 1996, USA.

Wind River Systems, pLUG&SIM Information, 1998, Web Page,
http://www.windriver.com/products/html/plug sim ds.html

135

APPENDIX A. XML TAGS AND ATTRIBUTES OF THE FILE FORMAT

Tag Property Type |Restrictions Example
LibraryName String | No special characters | <LIBRARY
LibraryName="QUEUE"
Explanation String - Explanation="This Library
Library Predefined Librar contains my elements"
Uses string | oo y Uses="LibL,Lib2"
Layout="True">
Layout Boolean | “True,” “False” </LIBRARY>
. No special characters, <DataType
TypeName String Name space limitations | TypeName="Distribution"
Explanation String - Explanation="defines
DataType Abstract Boolean | “True,” “False” parameters of a distribution™
Visibility parameters NodeLayout="258.0,426.0,tr
NodeLayout String depending on ue™>
implementation </DataType>
- - No special characters, <QUEUE.Distribution
Name (WhiteSpace) String Name space limitations | Explanation="Production
Explanation String - Rate" Required="True"
DataTvpe Required Boolean |“True,” “False” RelatlonLayout:"'-'40.0, 0.0,-
T\L& Value String As shown in Chapter-5 | 9.0,-28.0,true,true
instance - Value="{'Normal',{150.0,15
Composition visibility 0}, }">
RelationLayout String parameters depending Rate
on implementation </QUEUE Distribution>
TypeName String No special ch_ara}cte_rs,
Name space limitations <ComponentType
Explanation String - TypeName="Source"
Abstract Boolean | “True,” “False” Explanation="Produces "
ComponentType) Visibility parameters PictureFile=""
NodeLayout String depending on NodeLayout="95.0,301.0,tru
implementation e true">
. . . Full file path of image | </ComponentType>
PictureFile String for component
. . No special characters, <QUEUE.Source
Name (WhiteSpace) String Name space limitations | NodeLayout="39.0,59.0"
Value String As shown in Chapter-5 | NodeAlignment="NORMAL
NodeAlignment Strin “NORMAL,™CW,™CC | *
ComponentType 9 N9 | w ""REVERSE” Value="{{{,{1024,'Data’,'gc
Instance hfsh’}}},,{'Normal',{150.0,1
Visibility parameters 5.0},,.}..{'Normal',{150.0,15.
NodeLayout String depending on 0}, 13{}">
implementation Source_0
</QUEUE.Source>
. No special characters, <PortType
PortType TypeName String Name space limitations | TypeName="InputPort"
Explanation String - Explanation="Input Port
Abstract Boolean | “True,” “False” Definition" Abstract="False"
Visibility parameters NodeLayout="355.0,185.0,tr
NodeLayout String | depending on ue" Symbol="Line">
implementation </PortType>
Symbol Constant | “Default,” “Circle,”

136

“FilledCircle,”
"FilledSquare,” "Line,”
“Square,” “Diamond,”
“FilledDiamond,”
“Triangle,”
“FilledTriangle,” None”

No special characters,

Name (WhiteSpace) String Name space limitations
Explanation String -
Value String As shown in Chapter-5
From String 0..1,”"1.n,”"n” /I nor <QUEUE.Output
number A
: 0 171 linor Explanation="Output port of
To String ! ‘ source” From="n" To="n"
PortType nqmber - Left="-2"
Instance Bitmap/box s1zeé Top="-2" RelationLayout="-
_— Top Integer | -1 Left; -2 Right; -3 Top; 42.0. 15.0,true” Value="">
4 Bottom _ out
Bitmap/box size </QUEUE.Output>
Left Integer -1 Left; -2 Right; -3 Top;
-4 Bottom
Composition visibility
RelationLayout String parameters depending
on implementation
. No special characters,
TypeName String Name space limitations
Explanation String -
Abstract Boolean | “True,” “False”
Visibility parameters
NodelLayout String depending on <RelationType
implementation TypeName="Link"
“Default,” “None,” Explanation="Link without
“Arrow,” “Triangle,” Delay”
“FilledTriangle,” HeadSymbol="Arrow"
HeadSymbol Byte “Diamond,” TailSy%boI:"None"
“FilledDiamond,” LineSymbol="Plain"
“Circle,” “FilledCircle” | FromPortType="QUEUE.Ou
. TailSymbol Byte Same as Head Symbol | tput"
RelationType “Default,” “Plain,” ToPortType="QUEUE.Input
LineSymbol Byte “Dashed,” “Double,” Port"
”Dot,””DashDot” FromPortRelationLayout="-
PortTypeSelection 44.0,9.0,true"
; : relation visibility ToPortRelationLayout="18.0
FromPortRelationLayout | String parameters depending 9.0,true”
on implementation NodelLayout="288.0,101.0,tr
PortTypeSelection ue">
ToPortRelationLayout String relation visibility . </RelationType>
parameters depending
on implementation
FromPortType String Name Space Restrictions
ToPortType String Name Space Restrictions
RelationType . . No special characters, <QUEUE.Link
Instance Name (WhiteSpace) String Name space limitations | Explanation="Link without
- Value String As shown in Chapter-5 | Delay”
From String Name Space Restrictions | From="Source_0.0Out"
To String Name Space Restrictions | To="Queue_0.In" Value=","

137

Avrbitrary relation
visibility parameters in

RelationLayout="">
Link_0

RelationLayout String scenario depending on | </QUEUE.Link>
implementation
TypeName String No special ch_ara}cte_rs, <ScenarioType
_ ' Name space limitations TypeName="Node"
ScenarioType Explanation String - Explanation=""
“« » » Component="True">
Component Boolean | “True,” “False </ScenarioType>
- - No special characters, <NodeModel.Node
Name (WhiteSpace) String Name space limitations | NodeLayout="74.0,168.0"
Value String As shown in Chapter-5 | NodeAlignment="NORMAL
NodeAlignment Strin “NORMAL,™CW,™CC | *

) g 9 | W ""REVERSE” Value="{{ {{{,{1024, Data’,
ScenarioType gchfsh’}}},.{'Normal',{150.0
Instance ,15.0},,.},,{'Normal',{150.0,1

Visibility parameters 5.0}, 1354} {L{'Normal' {
NodeLayout String depending on 150.0,15.0},,,},1500}.{,..}...{
implementation) R TS 3 KIS S) e
Chyenne
</NodeModel.Node>
. - No special characters, .
Name (WhiteSpace) String Name space limitations quttEﬁpllqanatl_ond—_ﬁrn m't'
Explanation String - nt . eqlﬂ're = lTue
Int Required Boolean | “True,” “False” Value="15.0
- - . Range="0..12,15,18..25">
Unit String -
Val I R Cimitai Samplelnt
alue nteger ange Limitations </Int>
Range String -
. . No special characters, A
Name (WhiteSpace) String Name space limitations ;Longl Exp:gnftlon— A Long
Explanation String - rray E'_ N o
Lon Required Boolean |“True,” “False” Required="True" Value=
9 o Sl Range="0..12,15,18..25">
Val L g R Cimitat LongArray[1,3][3,5]
alue ong ange Limitations </Long>
Range String -
. . No special characters, <Float
Name (WhiteSpace) String Name space limitations | Explanation="Variance of
Explanation String - Normal distribution” Unit=""
Required Boolean | “True,” “False” Decimal="5"
Float Unit String | - Required="True"
Decimal Byte - Value="15.0"
Value Float Range Limitations Range="0..200">
- Variance
Range String - </Float>
- - No special characters, <Double
Name (WhiteSpace) String Name space limitations | Explanation="Variance of
Explanation String - Normal distribution” Unit=""
Required Boolean | “True,” “False” Decimal="5"
Double Unit String |- Required="True"
Decimal Byte - Value="15.0"
Value Double | Range Limitations Range="0..200">
- Variance
Range String - </Double>
. - No special characters, <Boolean Explanation="A
Name (WhiteSpace) String Name space limitations | Boolean Array"
Boolean Explanation String - Required="True">
Required Boolean | “True,” “False” BoolArray[1,n]
Value Boolean |“True,” “False” </Boolean>

138

Char

Name (WhiteSpace)

String

No special characters,
Name space limitations

Explanation

String

Required

Boolean

“True,” “False”

Value

Char

Range Limitations

Range

String

<Char Explanation="A Char"
Required="True"
Range=""a"..'k')'o",r"..'w""
Value="a"">

MyChar

</String>

String

Name (WhiteSpace)

String

No special characters,
Name space limitations

Explanation

String

Required

Boolean

“True,” “False”

Value

String

Range Limitations

Range

String

<String Explanation="Type
of Distribution™
Required="True"
Range=""Normal','Poisson’,'B
inomial’,'Pareto™
Value=""Normal"'>

Type

</String>

Case

Conditions

String

Name space limitations

<Case
Conditions="Type="Poisson
>

</Case>

Attributes

<Attributes></Attributes>

Ports

<Ports></Ports>

Interface

<Interface></Interface>

AttributeMaps

Mapping (WhiteSpace)

String

Name space limitations

<AttributeMaps>
transceiver_0.MyChar=
NewNamedChar
</AttributeMaps>

PortMaps

Mapping (WhiteSpace)

String

Name space limitations

<PortMaps>
transceiver_0.Transfer=
XMT

</PortMaps>

Components

<Components>
</Components>

Connections

<Connections>
</Connections>

Extension

Extended TypeName

String

Name space limitations

RelationLayout

String

Extension relation
visibility parameters
depending on
implementation

<Extension
ExtendedTypeName="QUE
UE.Queue"
RelationLayout="">
</Extension>

139

APPENDIX B. SCREEN SHOTS

Figure 80. Composition Cardinality

140

Figure 82. Relation Type Properties

141

:‘h'%‘\ﬁ—

Change Name

Edit Values

Map Attributes

Turn Component #
S

Figure 83. Component Pop-Up Menu

CETET O x|
LEMEFITE ' _lapud ibmitars Cofminpag 1=4¢
DR L0 _ELERE HTE 3 _inpel_Akdkeas]_Oada Cutpul LEMEMTE T_a pul_Bleilyi o_Cudis gl D2=

Figure 84. Mapping Ports
EETETE T =

[Z0R_0
e [ARNDONM_LCHC_ELEMENTA 2_ingar_sasiratt_laly

EIEI—‘

Figure 85. Mapping Attributes

142

APPENDIX C. XML DOCUMENTS OF CASE STUDIES

Section 1: Digital Circuitry

a) Random Logic Elements

- <LIBRARY LibraryName="RANDOM_LOGIC_ELEMENTS" Explanation="This Library contains
Random Logic Elements">
<PortType TypeName="Signal_Port" Explanation=
NodeLayout="297.8704833984375,103.53668212890625,true" Symbol="Line" />
<RelationType TypeName="Line" Explanation="" HeadSymbol="None" TailSymbol="None"
LineSymbol="Plain" FromPortType="RANDOM_LOGIC_ELEMENTS.Signal_Port"
ToPortType="RANDOM_LOGIC_ELEMENTS.Signal_Port"
FromPortRelationLayout="602.75927734375,132.11111450195312,12.0,8.361122131347656,true"
ToPortRelationLayout="498.0,45.0,-11.0,-14.0,true"
NodeLayout="533.6858520507812,63.786407470703125,true" />
- <ComponentType TypeName="2_Input_Abstract_Gate" Explanation="Abstract gate definition with
delay time, 2 input and 1 output ports" Abstract="True" PictureFile=""
NodeLayout="272.5833740234375,265.39776611328125,true,true">
- <Attributes>
<Float Explanation="" Unit="nanosec" Required="True" Range="0.0..200.0"
Value="35.0">PropagationDelay</Float>
</Attributes>
- <Ports>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="0"
Top="5" RelationLayout="-21.0,35.0,true"
Value=",">Input_1</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="0"
Top="20" RelationLayout="283.0,188.0,-86.85232543945312,14.84228515625,true"
Value=",">Input_2</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="42"
Top="13" RelationLayout="409.0,183.0,27.0,21.0,true"
Value=",">Output</RANDOM_LOGIC_ELEMENTS.Signal_Port>
</Ports>
</ComponentType>
- <ComponentType TypeName="2AND" Explanation="AND gate with 2 Inputs"
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\2AND.gi
" NodeLayout="165.58334350585938,366.2310791015625,true,true">
<Extension ExtendedTypeName="RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate"
RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="2NAND" Explanation="NAND gate with 2 Inputs"
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\2NAND.
gif" NodeLayout="251.5833740234375,425.2310791015625,true,true">
<Extension ExtendedTypeName="RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate"
RelationLayout="" />
<Attributes />
<Ports />

143

</ComponentType>
- <ComponentType TypeName="20R" Explanation="OR gate with 2 Inputs"
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\20OR.gif"
NodeLayout="357.7545166015625,433.8416748046875,true,true">
<Extension ExtendedTypeName="RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate"
RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="2NOR" Explanation="NOR gate with 2 Inputs"
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\2NOR.gi
" NodeLayout="442.8994140625,432.6951904296875,true,true">
<Extension ExtendedTypeName="RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate"
RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="2XOR" Explanation="XOR with 2 input"
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\2XOR.gi
" NodeLayout="527.0,360.0,true,true">
<Extension ExtendedTypeName="RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate"
RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="NOT" Explanation="Negation gate"
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\NOT .gif"
NodeLayout="59.0,107.0,true,true">
<Attributes />
- <Ports>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="0"
Top="13" RelationLayout="224.0,101.0,-49.0,11.0,true"
Value=",">Input</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="42"
Top="13" RelationLayout="234.0,64.0,-33.0,-20.0,true"
Value=",">Output</RANDOM_LOGIC_ELEMENTS.Signal_Port>
</Ports>
</ComponentType>
</LIBRARY>

b) Bus Structures

- <LIBRARY LibraryName="RANDOM_LOGIC_BUS_STRUCTURES" Explanation="Contains elements
required to poll single lines into busses" Uses="RANDOM_LOGIC_ELEMENTS">
<PortType TypeName="16BitBusPort" Explanation="" NodeLayout="180.0,142.0,true"
Symbol="Square" />
<RelationType TypeName="16BitBus" Explanation="" HeadSymbol="None" TailSymbol="None"
LineSymbol="Double" FromPortType="RANDOM_LOGIC_BUS_STRUCTURES.16BitBusPort"
ToPortType="RANDOM_LOGIC_BUS_STRUCTURES.16BitBusPort"
FromPortRelationLayout="170.0,86.0,-46.0,8.0,true"
ToPortRelationLayout="283.0,88.0,21.0,7.0,true" NodeLayout="189.0,32.0,true" />
- <ComponentType TypeName="1TO16" Explanation="Transforms 1 bus input into 16 bits"
PictureFile="" NodeLayout="59.0,241.0,true,true">
<Attributes />
- <Ports>

144

<RANDOM_LOGIC_BUS_STRUCTURES.16BitBusPort Explanation="" From="n" To="n"
Left="-1" Top="-1" RelationLayout="-41.0,20.0,true"
Value=",">Bus</RANDOM_LOGIC_BUS_STRUCTURES.16BitBusPort>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">0</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">1</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">2</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">3</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">4</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">5</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">6</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">7</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">8</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">9</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">10</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">11</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">12</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">13</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">14</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-2" Top="-
2" Value=",">15</RANDOM_LOGIC_ELEMENTS.Signal_Port>
</Ports>
</ComponentType>
- <ComponentType TypeName="16TO1" Explanation="Transforms 16 bits input into a bus"
PictureFile="" NodeLayout="305.0,252.0,true,true">
<Attributes />
- <Ports>
<RANDOM_LOGIC_BUS_STRUCTURES.16BitBusPort Explanation="" From="n" To="n"
Left="-2" Top="-2" RelationLayout="20.0,19.0,true"
Value=",">Bus</RANDOM_LOGIC_BUS_STRUCTURES.16BitBusPort>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" Left="-1" Top="-1"
Value=",">0</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">1</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">2</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">3</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">4</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">5</RANDOM_LOGIC_ELEMENTS.Signal_Port>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">6</RANDOM_LOGIC_ELEMENTS.Signal_Port>

145

<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">7</RANDOM_LOGIC_ELEMENTS.Signal_Port>

<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">8</RANDOM_LOGIC_ELEMENTS.Signal_Port>

<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">9</RANDOM_LOGIC_ELEMENTS.Signal_Port>

<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">10</RANDOM_LOGIC_ELEMENTS.Signal_Port>

<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">11</RANDOM_LOGIC_ELEMENTS.Signal_Port>

<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">12</RANDOM_LOGIC_ELEMENTS.Signal_Port>

<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">13</RANDOM_LOGIC_ELEMENTS.Signal_Port>

<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">14</RANDOM_LOGIC_ELEMENTS.Signal_Port>

<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="-1" Top="-
1" Value=",">15</RANDOM_LOGIC_ELEMENTS.Signal_Port>

</Ports>
</ComponentType>
</LIBRARY>

c) Sources

- <LIBRARY LibraryName="RANDOM_LOGIC_SOURCES" Explanation="This library contains source
elements for digital circuit design”
Uses="RANDOM_LOGIC_ELEMENTS,RANDOM_LOGIC_BUS_STRUCTURES">

- <ComponentType TypeName="Abstract_Generator" Explanation="" Abstract="True" PictureFile=""
NodeLayout="158.0,26.0,true,true">
<Attributes />
- <Ports>
<RANDOM_LOGIC_ELEMENTS.Signal_Port Explanation="" From="n" To="n" Left="20"
Top="9" Value=",">Out</RANDOM_LOGIC_ELEMENTS.Signal_Port>
</Ports>
</ComponentType>
- <ComponentType TypeName="0" Explanation="Produces logical 0"
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\0_Gener
ator.gif" NodeLayout="97.0,169.0,true,true">
<Extension ExtendedTypeName="RANDOM_LOGIC_SOURCES.Abstract_Generator"
RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="1" Explanation="Generates logical 1"
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\1_Gener
ator.gif" NodeLayout="207.0,208.0,true,true">
<Extension ExtendedTypeName="RANDOM_LOGIC_SOURCES.Abstract_Generator"
RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="Square_Wave" Explanation="Generates square signal with given
period"
PictureFile="D:\Hakan\Thesis\M'YDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\Square_
Wave_Generator.gif" NodeLayout="303.0,174.0,true,true">
<Extension ExtendedTypeName="RANDOM_LOGIC_SOURCES.Abstract_Generator"
RelationLayout="" />

146

- <Attributes>
<Float Explanation="frequancy of the square wave" Unit="MHz" Required="True">freq</Float>
</Attributes>
<Ports />
</ComponentType>
- <ComponentType TypeName="Number_Generator" Explanation="Produces Numbers on the data
output shifting with the given frequency”
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\DigitalSIM\LogicGates\Number
_Generator.gif" NodeLayout="142.0,351.0,true,true">
- <Attributes>
<Float Explanation="frequency of changing to next number in the list" Unit="MHz"
Required="True">freg</Float>
<Int Explanation="Numbers list to be produced" Unit="" Required="True"
Range="0..65365">RepetingNumbers[1,n]</Int>
</Attributes>
- <Ports>
<RANDOM_LOGIC_BUS_STRUCTURES.16BitBusPort Explanation="" From="n" Left="29"
Top="14" Value=",">Data</RANDOM_LOGIC_BUS_STRUCTURES.16BitBusPort>
</Ports>
</ComponentType>
</LIBRARY>

d) Two-Bit Adder

- <LIBRARY LibraryName="TwoBitAdderLibrary" Explanation="Contains the scenario of two bit adder
composed of random logic elements"
Uses="RANDOM_LOGIC_ELEMENTS,RANDOM_LOGIC_BUS_STRUCTURES,RANDOM_LO
GIC_SOURCES">

- <ScenarioType TypeName="2BitAdder" Explanation="" Component="True" PictureFile="">
- <Components>
<RANDOM_LOGIC_ELEMENTS.2XOR NodeLayout="102.0,50.0" NodeAlignment="NORMAL"
Value="{{,{35.0},{,,.,.}}},,">2XOR_0</RANDOM_LOGIC_ELEMENTS.2XOR>
<RANDOM_LOGIC_ELEMENTS.2AND NodeLayout="105.0,163.0"
NodeAlignment="NORMAL"
Value="{{,{35.0},{,,.,.}}},,">2AND_0</RANDOM_LOGIC_ELEMENTS.2AND>
<RANDOM_LOGIC_ELEMENTS.2XOR NodeLayout="196.0,43.0" NodeAlignment="NORMAL"
Value="{{,{35.0},{,,.,.}}},,">2XOR_1</RANDOM_LOGIC_ELEMENTS.2XOR>
<RANDOM_LOGIC_ELEMENTS.NOT NodeLayout="156.0,89.0" NodeAlignment="CW"
Value=",{,,.}'>NOT_0</RANDOM_LOGIC_ELEMENTS.NOT>
<RANDOM_LOGIC_ELEMENTS.2AND NodeLayout="212.0,119.0"
NodeAlignment="NORMAL"
Value="{{,{35.0},{.....}}}..,">2AND_1</RANDOM_LOGIC_ELEMENTS.2AND>
<RANDOM_LOGIC_ELEMENTS.2AND NodeLayout="215.0,228.0"
NodeAlignment="NORMAL"
Value="{{,{35.0},{.....}}}..,">2AND_2</RANDOM_LOGIC_ELEMENTS.2AND>
<RANDOM_LOGIC_ELEMENTS.20R NodeLayout="292.0,147.0" NodeAlignment="NORMAL"
Value="{{,{35.0},{.....}}}.,">20R_1</RANDOM_LOGIC_ELEMENTS.20R>
<RANDOM_LOGIC_ELEMENTS.NOT NodeLayout="24.0,219.0" NodeAlignment="CW"
Value=",{,,.}'>NOT_1</RANDOM_LOGIC_ELEMENTS.NOT>
<RANDOM_LOGIC_ELEMENTS.2AND NodeLayout="115.0,249.0"
NodeAlignment="NORMAL"
Value="{{,{35.0},{.....}}}..,">2AND_3</RANDOM_LOGIC_ELEMENTS.2AND>
<RANDOM_LOGIC_ELEMENTS.NOT NodeLayout="32.0,266.0" NodeAlignment="CW"
Value=",,{,,,}'>NOT_2</RANDOM_LOGIC_ELEMENTS.NOT>
<RANDOM_LOGIC_ELEMENTS.2AND NodeLayout="116.0,296.0"
NodeAlignment="NORMAL"
Value="{{,{35.0},{,,.,.}}},,">2AND_4</RANDOM_LOGIC_ELEMENTS.2AND>

147

<RANDOM_LOGIC_ELEMENTS.20R NodeLayout="381.0,185.0" NodeAlignment="NORMAL"
Value="{{,{35.0},{,,.,.}}},,">20R_0</RANDOM_LOGIC_ELEMENTS.20R>
<RANDOM_LOGIC_ELEMENTS.2AND NodelLayout="211.0,288.0"
NodeAlignment="NORMAL"
Value="{{,{35.0},{,,.,.}}},,">2AND_5</RANDOM_LOGIC_ELEMENTS.2AND>
<RANDOM_LOGIC_ELEMENTS.2AND NodeLayout="214.0,170.0"
NodeAlignment="NORMAL"
Value="{{,{35.0},{,,.,.}}},,">2AND_6</RANDOM_LOGIC_ELEMENTS.2AND>
<RANDOM_LOGIC_ELEMENTS.20R NodeLayout="294.0,259.0" NodeAlignment="NORMAL"
Value="{{,{35.0},{,,.,.}}},,">20R_2</RANDOM_LOGIC_ELEMENTS.20R>

</Components>
- <Connections>

<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2XOR_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
To="2AND_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
Value=","
RelationLayout="61.0,55.0,61.0,168.0">Line_0</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2XOR_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
To="2AND_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
Value=","
RelationLayout="77.0,71.0,77.0,183.0">Line_1</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2XOR_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output"
To="2XOR_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
Value="," RelationLayout="">Line_2</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2XOR_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
To="NOT_0.Input" Value=","
RelationLayout="179.0,48.0">Line_5</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="NOT_0.Output"
To="2AND_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
Value="," RelationLayout="">Line_6</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output”
To="2AND_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
Value="," RelationLayout="">Line_7</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2XOR_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
To="2AND_2.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
Value=","
RelationLayout="156.0,25.0,156.0,205.0">Line_9</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output”
To="20R_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1" Value=","
RelationLayout="">Line_10</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.lnput_1"
To="NOT_L1.Input" Value=","
RelationLayout="">Line_3</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="NOT_1.Output"
To="2AND_3.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
Value="," RelationLayout="">Line_4</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_3.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output"
To="2AND_2.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
Value="," RelationLayout="">Line_8</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.lnput_2"

148

To="2AND_3.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
Value=","
RelationLayout="85.0,244.0,86.0,268.0">Line_12</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
To="NOT_2.Input" Value=","
RelationLayout="">Line_13</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="NOT_2.Output"
To="2AND_4.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
Value="," RelationLayout="">Line_14</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
To="2AND_4.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
Value=","
RelationLayout="24.0,201.0,24.0,316.0">Line_15</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_2.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.lnput_1"
To="2AND_5.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
Value=","
RelationLayout="171.0,233.0,173.0,294.0">Line_16</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_4.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output"
To="2AND_5.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
Value="," RelationLayout="">Line_17</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="20R_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output"
To="20R_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1" Value=","
RelationLayout="">Line_19</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_2.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output”
To="20R_2.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1" VValue=","
RelationLayout="">Line_11</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_5.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output”
To="20R_2.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2" Value=","
RelationLayout="">Line_20</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="20R_2.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output"
To="20R_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2" Value=","
RelationLayout="">Line_18</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_2.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Ilnput_1"
To="2AND_6.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2"
Value="," RelationLayout="">Line_21</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output"
To="2AND_6.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1"
Value="," RelationLayout="">Line_22</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""
From="2AND_6.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output"
To="20R_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2" Value=","
RelationLayout="">Line_23</RANDOM_LOGIC_ELEMENTS.Line>
</Connections>
- <Interface>
<PortMaps>2XOR_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_1=X,
2XOR_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Input_2=Y,
2XOR_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.lnput_1=CarryIN,
2XOR_1.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output=Sum,

149

20R_0.RANDOM_LOGIC_ELEMENTS.2_Input_Abstract_Gate.Output=CarryOUT</Po
rtMaps>
</Interface>
</ScenarioType>
</LIBRARY>

e) Four-Bit Adder

- <LIBRARY LibraryName="FourBitAdderLibrary" Explanation=""
Uses="RANDOM_LOGIC_ELEMENTS, TwoBitAdderLibrary">
- <ScenarioType TypeName="4BitAdder" Explanation="" Component="True" PictureFile="">
- <Components>
<TwoBitAdderLibrary.2BitAdder NodeLayout="130.0,75.0" NodeAlignment="NORMAL"
Value:"{{{{’{SS'O}’{'””}}}l”{{7{35'0}7{””’}}}”’{{1{35'0}7{””’}}}”"’{’”}’{{’{35'0}7{”1”}}}”7{{1{35'
0},{,”,,}}}”,{{,{35.0},{,,,,,}}},””{,,,},{{,{35.0},{,,,”}}},”,,{,,,},{{,{35.0},{,”,,}}},,,{{,{35.0},{,,”,}}}”,

{{1{35'_0}'{"77'}}}117{{1{35'(_)}7{1HH}}}_’”{{'{ss'Q}l{mll}}}vl}l{HHHHHHIHHIHHHHHllmllmmlmll}ll{mlllnv}
}'>2BitAdder_0</TwoBitAdderLibrary.2BitAdder>

<TwoBitAdderLibrary.2BitAdder NodeLayout="210.0,168.0" NodeAlignment="NORMAL"
Value:"{{{{’{SS'O}’{'””}}}‘”{{7{35'0}7{””’}}}”’{{1{35'0}7{””’}}}”"’{’”}’{{’{35'0}7{”‘”}}}”7{{1{35'
0},{,”,,}}}”,{{,{35.0},{, ' ’”}}}’””{’”}Y{{l{35'0}’{””Y}}}””’{’ ' ’}’{{Y{SS'O}Y{Y””}}}7”{{’{35'0}’{"YH}}}YYY

{{1{35'_0}'{"77'}}}117{{1{35'(_)}7{1HH}}}_’”{{'{ss'Q}l{mll}}}vl}l{HHHHHHIHHIHHHHHllmllmmlmll}ll{mlllnv}
}'>2BitAdder_1</TwoBitAdderLibrary.2BitAdder>

<TwoBitAdderLibrary.2BitAdder NodeLayout="287.0,260.0" NodeAlignment="NORMAL"
Value:"{{{{’{35'0}7{7””}}}‘”{{7{35'0}7{””’}}}”’{{1{35'0}7{””’}}}”"’{’”}’{{’{35'0}7{”‘”}}}”7{{1{35'
0},{,”,,}}}”,{{,{35.0},{, ' ’”}}}’””{’”}Y{{l{35'0}’{””Y}}}””’{’ ' ’}’{{1{35'0}1{’Y”’}}}Y”{{’{35'0}’{”111}}}711

{{1{35'_0}'{"77'}}}117{{1{35'(_)}7{1HH}}}_’”{{'{ss'q}l{mll}}}vl}l{HHHHHHIHHIHHHHHllmllmmHHH}H{!HHHH}
}'>2BitAdder_2</TwoBitAdderLibrary.2BitAdder>

<TwoBitAdderLibrary.2BitAdder NodeLayout="358.0,361.0" NodeAlignment="NORMAL"
Value:"{{{{,{SS-O},{,,,,,}}},,,{{,{35-0},{,,,,,}}},,,{{,{35-0},{,,,,,}}},,,,,{,,,},{{,{35-0},{”,,,}}},,,{{,{35-
0},{,”,,}}}”,{{,{35.0},{, 1 "7}}}’””{’”}Y{{I{SS'O}’{””Y}}}”Y”{’ 1 ’}’{{1{35'0}1{’Y7”}}}Y”{{’{35'0}’{”111}}}711

{{435.05.4..,.. 133, {{35.01. {0, 133 {0435 01 4o 1 s bl }
}'>2BitAdder_3</TwoBitAdderLibrary.2BitAdder>

</Components>
- <Connections>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="2BitAdder_0.CarryOUT"
To="2BitAdder_1.CarryIN" Value=","
RelationLayout="312.0,144.0">Line_0</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="2BitAdder_1.CarryOUT"
To="2BitAdder_2.CarryIN" Value=","
RelationLayout="387.0,234.0">Line_1</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="2BitAdder_2.CarryOUT"
To="2BitAdder_3.CarryIN" Value=","
RelationLayout="460.0,322.0">Line_2</RANDOM_LOGIC_ELEMENTS.Line>
</Connections>
- <Interface>
<PortMaps>2BitAdder_0.CarryIN=CarryIN, 2BitAdder_0.X=X_0, 2BitAdder_0.Y=Y_J0,
2BitAdder_0.Sum=Sum_0, 2BitAdder_1.X=X 1, 2BitAdder_1.Y=Y 1,
2BitAdder_1.Sum=Sum_1, 2BitAdder_2.X=X 2, 2BitAdder_2.Y=Y 2,
2BitAdder_2.Sum=Sum_2, 2BitAdder_3.X=X_3, 2BitAdder_3.Y=Y_3,
2BitAdder_3.Sum=Sum_3, 2BitAdder_3.CarryOUT=CarryOUT</PortMaps>
</Interface>
</ScenarioType>
</LIBRARY>

f) 16-Bit Adder

150

- <LIBRARY LibraryName="SixteenBitAdderLibrary" Explanation=""
Uses="RANDOM_LOGIC_ELEMENTS, TwoBitAdderLibrary,FourBitAdderLibrary">
- <Components>
<FourBitAdderLibrary.4BitAdder NodeLayout="18.0,35.0" NodeAlignment="NORMAL"

Value:"{{{{{{’{ss'o}’{””’}}}"Y{{'{35'O}I{YY”’}}}”7{{7{35'0}1{””’}}}”’”{’”}7{{7{35'0}1{"”7}}}”’{{’{3
5'0}1{”’”}}}’”{{1{35'0}1{”l"}}}””’{ll’}7{{’{35'0}1{””’}}}””1{1”}7{{7{35'0}’{””l}}}’ll{{7{35'0}’{””1}}}
o {0{85.03. 4., 31 A{A85.01 4, 1 ALAB5.01. Lo EE H s, Bl
JHA35.04{ 1 {{85.01 ., 1 {{35.01. 4., 3 {0 BE{85.01 . 113, {{L{85.014.,
o331 {0{85.0 0 B 40 BALA35.01 4,0 1 L BLA35.01. 0,00 331 {43501 4, B ({8
5.0%{ 13 A{{85.03. 0.0, 130 {{A85.01. L. 11 bl ol L
35.01.{..... 131 {{{35.01.{.... 13}, {{.35.01.{.... }} 3o 0 H{A85.01. 0., 331 {{435.01 {0 11 {
{’{35'0}Y{|’Y”}}}’””{"Y}l{{’{SS'O}Y{Y””}}}”"Y{"Y}Y{{Y{SS'O}Y{I””}}}”Y{{’{SS'O}V{’”'l}}}’”{{Y{ss'O}l{Hl
23 {35.0140 1 L3501 4 B h bl Foln SR {{{{L{35.0},
{ llll }}}”’{{’{35'0}’{”1”}}}l”{{1{35'0}’{”1”}}}1”"{7”}’{{’{35'0}’{1””}}}l”{{7{35'0}7{”1ll}}}l”{{’{35'o
}l{ 11111 }}}l””{"’}’{{’{35'0}’{"”l}}}”l’7{”1}’{{1{35'0}’{11’7’}}}1”{{7{35'0}1{”1”}}}”l{{l{SS'O}’{””l}}}”’{

{1{35'0}1{77111}}}11l{{l{ss'o}v{lHn}}}lv}l{ vvv }H{ lllllllll }}}v{ lllll }H{ llllllllllllllll
,,,,,,,,,,, }1}">4BitAdder_0</FourBitAdderLibrary.4BitAdder>

<FourBitAdderLibrary.4BitAdder NodeLayout="176.0,138.0" NodeAlignment="NORMAL"
Value:"{{{{{{’{SS'O}’{””’}}}‘”{{7{35'0}1{””’}}}”’{{’{35'0}’{”“’}}}”’”{’”}7{{7{35'0}’{1””}}}”’{{’{3
5'0}’{”’”}}}’”{{’{35'0}1{””’}}}””Y{l ' ’}Y{{Y{35'0}|{””’}}}"”’{’”}Y{{Y{35'O}7{””’}}}‘ ' ’{{1{35'0}1{’””}}}
o {{{85.014,,, 311 A0435.01. 4, B3 {03501 L Bh H i, Fodon
1}}1{{{{1{35'0}’{”"Y}}}’”{{’{35'0}’{””Y}}}’”{{7{35'0}7{”1”}}}’””{’ ' ’}’{{‘{35'0}’{1 ””}}}”7{{’{35'0}1{1 "
11}}}’”{{’{35'0}’{””Y}}}””’{’ ' ’}’{{’{35'0}1{””Y}}}”’”{”’}Y{{l{35'0}’{‘””}}}”’{{’{35'0}1{’””}}}7”{{1{3
5.0%{., 13 A{{85.03. 0,0, 13 {{A35.01. L, 13 2l ol BB
1{35'0}1{"”7}}}”’{{’{35'0}1{1””}}}”’{{’{35'0}’{””’}}}”"Y{”’}Y{{Y{SS'O}Y{””’}}}”7{{’{35'0}’{’ ' ”'}}}’ ! Y{
{’{35'0}7{1””}}}’””{’ ! Y}’{{’{SS'O}Y{””’}}}”"Y{’”}Y{{Y{SS'O}Y{l ””}}}”7{{’{35'0}7{’ ,,”}}},”{{1{35.0},{”,
523 R BN ST 43 R CO KU R I 13 3 & E s B P {H{{35.0},
{ “““ }}}”’{{’{35'0}’{”‘”}}}‘”{{‘{35'0}’{”‘”}}}‘”"{7”}’{{’{35'0}’{1””}}}’ 1 ’{{7{35'0}1{””’}}}’ 1 ’{{7{350
}‘{ ””” }}}‘””{’ 1 ’}’{{'{35'0}’{’ "”}}}”‘”{”‘}7{{1{35'0}’{1””}}}‘”{{7{35'0}1{7”"}}}”’{{‘{35'0}7{’””}}}”’{

{GECRUA NI 33 SRR ECH AT 1) 0 5 I I | A COPPON | 1 X (9199 % PP
,,,,,,,,,,, }">4BitAdder_1</FourBitAdderLibrary.4BitAdder>

<FourBitAdderLibrary.4BitAdder NodeLayout="325.0,238.0" NodeAlignment="NORMAL"

Value:"{{{{{{’{ss'o}’{””’}}}’”{{’{35'0}’{7”7’}}}”7{{7{35'0}1{””’}}}”’”{’”}7{{7{35'0}1{"”7}}}”’{{’{3
5'0}’{”’”}}}’”{{‘{35'0}1{”‘”}}}””’{‘ 1 ’}7{{7{35'0}1{”“’}}}’”"{‘”}7{{7{35'0}’{””‘}}}‘ 1 ‘{{7{35'0}’{””‘}}}
o {{A435.01. 4,033} {{{85.014. 1 A{{85.01. 0o b bl |
1}}1{{{{7{35'0}’{””’}}}’ ! Y{{|{35'O}|{””’}}}"7{{1{35'0}7{’””}}}’””{’ ' ’}’{{7{35'0}’{”’”}}}’”{{’{35'0}1{1 "
o1 H{{35.0L 3 {0 BALA35.0. 0 1 L B850 4, 13 {{85.0. 4,0 B3 {8

5.01.{,,.,, 111 A{{35.014,0,,, 311 A{{35.01 4,0 b 2o lossssnsssmssmssssssssssssssnns ol B
{35.01,{,,,, 331, {{{35.01.4,.,, 131, A{A35.01. 4,00 12 0 BALAB5.01. 00 13, {485,010 30
{’{35'O}Y{|””}}}’””{’ ! Y}’{{’{SS'O}Y{Y””}}}”"Y{"Y}Y{{Y{35'O}Y{’ ””}}}”7{{’{35'0}7{’ ’”’}}}’”{{1{35'0}1{”1

923 R BN S T 43 R CO KU R TS 13 0 & ER s b JHH{{35.0},
{ """ }}}”’{{’{35'0}’{”‘”}}}‘”{{‘{35'0}’{”‘”}}}‘”"{7”}’{{’{35'0}7{1””}}}’ 1 ’{{’{35'0}7{”‘”}}}1 1 ’{{’{35'0

}‘{ 7777 }}}””’{’ 1 ’}’{{7{35'0}’{’ ’”‘}}}”‘”{”‘}7{{1{35'0}7{1””}}}‘”{{7{35'0}1{”"’}}}”’{{‘{35'0}7{’””}}}”’{

{1{35'0}1{771lY}}}Hl{{l{35'0}l{Hlll}}}”}l{ lll }YY{ lllllllll }}}v{ lllll }H{ llllllllllllllll
,,,,,,,,,,, }">4BitAdder_2</FourBitAdderLibrary.4BitAdder>

<FourBitAdderLibrary.4BitAdder NodeLayout="477.0,348.0" NodeAlignment="NORMAL"
Value:"{{{{{{’{SS'O}’{””’}}}‘”{{7{35'0}1{””’}}}”'{{'{35'0}’{””’}}}”’”{’”}7{{7{35'0}’{1””}}}”’{{’{3
5'0}’{”’”}}}’”{{’{35'0}1{””’}}}””Y{l ' ’}Y{{Y{35'0}|{””’}}}"”’{’”}Y{{Y{35'0}7{””’}}}’ ' ’{{1{35'0}1{’””}}}
w{{{85.01{,,,, 311, A1435.01.4,, 0 13 {UA35.01. L Bh F i, Fodon
1}}1{{{{1{35'0}’{”’”}}}’ ' Y{{’{SS'O}l{”"’}}}"7{{1{35'0}7{’””}}}’””{’ ' ’}’{{7{35'0}’{”’”}}}”Y{{’{BS'O}Y{I ”
11}}}’”{{’{35'0}’{””Y}}}””’{’ ' ’}’{{’{35'0}1{””Y}}}”’”{”’}Y{{l{SS'O}Y{‘””}}}”’{{’{35'0}1{’””}}}7”{{1{3
5.0%{0, 13 A{{85.03. 0,0 130 {{A35.01. L 11 s ol
{35.01,{...,. 3131, {{{35.01.4,... 131, A{435.01.4.... 1} 0 BALAB5.01.0 11, {435,011, 3
{’{35'0}7{’””}}}’””{’”}’{{’{35'0}7{7””}}}”’”{’”}Y{{Y{SS'O}Y{’ ””}}}”7{{’{35'0}7{’ ””}}}’”{{7{35'0}1{111
5323 AR AR SN S T 43 R CO KU R IS 13 8 & ER s Foon P {{H{{35.0},
{ """ }}}”’{{’{35'0}’{”‘”}}}1”{{‘{35'0}’{”‘”}}}‘”"{7”}’{{’{35'0}7{1””}}}’ 1 ’{{’{35'0}7{””‘}}}1 1 ’{{’{350
}‘{ ””” }}}’””{’ 1 ’}’{{7{35'0}’{’””}}}1 "”{”’}’{{’{35'0}’{1””}}}’”{{’{35'0}1{”“’}}}”’{{‘{35'0}7{””‘}}}”‘{

151

{‘{35'0}’{””’}}.}”’{{‘{35'0}'{’””}}}”}l{ll”””-”’”l””l””-l”l’”1””l”l””lIH}H{HIllHH}}}!{llll!}”{l!lll”lll”!lll
by >4BitAdder_3</FourBitAdderLibrary.4BitAdder>

</Components>
- <Connections>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="4BitAdder_0.CarryOUT"
To="4BitAdder_1.CarryIN" Value=","
RelationLayout="213.0,116.0">Line_0</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="4BitAdder_1.CarryOUT"
To="4BitAdder_2.CarryIN" Value=","
RelationLayout="368.0,219.0">Line_1</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="4BitAdder_2.CarryOUT"
To="4BitAdder_3.CarryIN" Value=","
RelationLayout="528.0,316.0">Line_2</RANDOM_LOGIC_ELEMENTS.Line>
</Connections>
- <Interface>
<PortMaps>4BitAdder_0.CarryIN=CarryIN, 4BitAdder_0.X_0=X_0,
4BitAdder_0.X_2=X_2, 4BitAdder_0.X_3=X_3, 4BitAdder_1.X |
4BitAdder_1.X_1=X_5, 4BitAdder_1.X_2=X_ 6, 4BitAdder_1.X .
4BitAdder_2.X_0=X_8, 4BitAdder_2.X_1=X 9, 4BitAdder_2.X__.
4BitAdder_2.X_3=X_11, 4BitAdder_3.X_0=X_12, 4BitAdder_3
4BitAdder_3.X_2=X_14, 4BitAdder_3.X_3=X_15, 4BitAdder_0
4BitAdder_0.Y_1=Y_1, 4BitAdder_0.Y_2=Y_2, 4BitAdder_ OY
4BitAdder_1.Y_0=Y_4, 4BitAdder_1.Y_1=Y_5, 4BitAdder_1.Y__.
4BitAdder_1.Y_3=Y_7, 4BitAdder_2.Y_0=Y_8, 4BitAdder_2.Y_
2=Y_1
Y_ 1

D

BitAdder_0.X_1=X_1,

U URRD
| o
O -
Tw

Hr\)oo-<><mooo

?-<-<-<‘|?'ﬁ><><><
QO@O.)‘<|><H\I-J>

4BitAdder_2.Y_2=Y_10, 4BitAdder_2.Y_3=Y_11, 4BitAdder_3.Y_| 2% _12,
4BitAdder_3.Y_1=Y_13, 4BitAdder_3.Y_2=Y_14, 4BitAdder_3.Y_3=Y_15,
4BitAdder_0.Sum_0=Sum_0, 4BitAdder_0.Sum_1=Sum_1, 4BitAdder_0.Sum_2=Sum_2,
4BitAdder_0.Sum_3=Sum_3, 4BitAdder_1.Sum_0=Sum_4, 4BitAdder_1.Sum_1=Sum_5,
4BitAdder_1.Sum_2=Sum_6, 4BitAdder_1.Sum_3=Sum_7, 4BitAdder_2.Sum_0=Sum_8,
4BitAdder_2.Sum_1=Sum_9, 4BitAdder_2.Sum_2=Sum_10, 4BitAdder_2.Sum_3=Sum_11,
4BitAdder_3.Sum_0=Sum_12, 4BitAdder_3.Sum_1=Sum_13,
4BitAdder_3.Sum_2=Sum_14, 4BitAdder_3.Sum_3=Sum_15,
4BitAdder_3.CarryOUT=CarryOUT</PortMaps>
</Interface>
</ScenarioType>
</LIBRARY>

g) 16-Bit Full Adder

- <LIBRARY LibraryName="SixteenBitFullAdderLibrary" Explanation=""
Uses="RANDOM_LOGIC_ELEMENTS,RANDOM_LOGIC_SOURCES, TwoBitAdderLibrary,Fo
urBitAdderLibrary,SixteenBitAdderLibrary, RANDOM_LOGIC_BUS_STRUCTURES">

- <ScenarioType TypeName="16BitFullAdder" Explanation="" Component="True" PictureFile="">
- <Components>
<SixteenBitAdderLibrary.16BitAdder NodeLayout="17.0,80.0" NodeAlignment="CW"
Value="{{{{{{.{35.01{,.. }}, {{.{35.00{,.... 1}, £{{35.0} L. W} L1 FALA35.01 L 131 AL,
{35'0}1{71m}}}lH{{v{ss'o}l{vmv}}}mll{vvv}l{{v{35'o}v{lvvvv}}}mn{lll}v{{l{BS'O}I{Hm}}}vvv{{l{ss-o}l{vml
}}}”l{{l{35'0}l{lHH}}}YH{{Y{SS'O}I{IllH}}}llv{{l{35'0}v{ﬂHl}}}vl}l{lHHHHIlmlvannmllvvvnvnmHHHH}H{HH
mll}}l{{{{v{35'o}v{nlll}}}lvv{{v{ss'o}v{m”}}}vn{{v{ss'o}v{mvl}}}lllH{m}l{{l{35'0}l{mll}}}m{{v{sS-O}l
{l"”}}}”’{{’{35'0}’{””’}}}”"Y{”Y}l{{l{35'0}7{””l}}}"YYI{”’}’{{Y{BS'O}’{””’}}}”’{{1{35'0}1{””’}}}IH{{V
{35.01.4..,,. 133 {{{35.01.{,,.., 113 {LABS.01. 4o 11 oo b dosn Jh{
{{{1{35'0}’{1””}}}’”{{’{35'0}1{1’7”}}}’”{{’{35'0}7{’””}}}””Y{Y"}’{{’{35'0}’{””7}}}’”{{7{35'0}’{”l”}}}
117{{’{35'0}1{”’”}}}’”’Y{HI}Y{{Y{35'0}’{”’”}}}”"l{ll’}l{{1{35'0}’{""7}}}7’1{{’{35'0}Y{YY”’}}}Y”{{V{SS'O}Y
{"’”}}}”’{{1{35'0}7{"’”}}}’”{{’{35'0}’{””l}}}”}l{””””YlIYYYYYYY”””llYllYYllllllllHlHlll}lY{llYlllYH}}l{{{{l{gS'
0}’{"771}}}771{{7{35'0}1{1"”}}}”7{{’{35'0}’{’””}}}””’{’”}’{{’{35'0}1{””’}}}”'{{'{35'0}’{”’”}}}”’{{’{3
5'0}’{”’”}}}””’{"’}’{{’{35'0}1{””’}}}”l”{’”}’{{’{35'0}'{””l}}}‘”{{’{35'o}’{””l}}}l”{{7{35'0}’{””1}}}
”’{{‘{35'0}’{””’}}}’”{{7{35'0}'{"”7}}}”}1{””’””””””l”ll"”””l”lll”“””1H}H{HHHH!}}}!{!lIH}H{IHIIHHH

152

,,,,,,,,,,,,,,,, B850, 00, {0485.03.4,, 113 {435.01. {0 30 0 WAB5.03 0 13 {
{‘{35'0}7{1””}}}’”{{’{35'0}7{1""}}}"'7‘{’77}‘{{7{35'0}7{7”“}}}””’{"‘}‘{{’{35'0}’{1””}}}’”{{’{35'0}!{”!
533500 0, {035,014, 1 L4350 11 s hodo
vvvvvvv }}v{{{{l{?’s'o}l{vml}}}m{{v{35'0}l{vml}}}vvv{{v{35'0}l{vml}}}lml{vvv}l{{v{?’S'o}v{lml}}}m{{v{35'o
}‘{ 7777 }}}’”{{’{35'0}’{’””}}}””’{”‘}7{{7{35'0}7{”‘”}}}"‘”{”’}’{{7{35'0}7{1””}}}”’{{‘{35'0}’{1””}}}”‘{
{35.05.4.... 11} {{{35.01{.... 13 {{A35.01 .. BH B, 0 T 5 ¢
{{{{’{35'0}7{”"‘}}}”’{{7{35'0}1{7”"}}}’”{{7{35'0}’{"”‘}}}”"‘{”’}’{{’{35'0}’{””‘}}}7”{{7{35'0}7{1”“}}
}"’{{’{35'0}1{”“’}}}“’”{”’}7{{’{35'0}7{”"’}}}”’”{’”}'{{’{35'0}7{”‘”}}}”’{{’{35'0}’{’””}}}’”{{7{35'0}
Lo B {35004, 1 U485.01 L B 1ol bl dHH{{{{35
'0}1{””’}}}'”{{’{35'0}1{””’}}}’”{{’{35'0}’{"”‘}}}”‘”{‘”}7{{7{35'0}’{“"’}}}"’{{‘{35'0}1{”‘”}}}‘”{{’{3
5'0}’{”’”}}}””’{"’}’{{’{35'0}’{””’}}}”"’{’”}’{{’{35'0}'{”"‘}}}‘”{{7{35'0}’{””‘}}}‘”{{7{35'0}’{’””}}}
w{085.01. 4 311 {85010 B s | SR 3 % S O PP
1111111111111111 }}l{{{{{{l{sS'O}V{"7”}}}”’{{’{35'0}’{”"’}}}”’{{7{35'0}’{”"’}}}7””{7”}7{{’{35'0}’{’””}}}’”{
{1{35-0}v{vlvvv}}}lvv{{v{ss'o}l{mH}}}Hm{m}v{{l{gs'o}l{mH}}}lHH{Ill}l{{v{35'0}l{vml}}}m{{v{ss-o}l{m
w3 0350140, 1 ALA35.01 {0 1 LAB5.01 4 B F s b
,,,,,,, IWAA35.05 {0, 130 {0485.03. 4., 3133 {435,014 30 L WAL(35.014.,, 13, {{1{35.0
}l{ 11111 }}}m{{l{ss'o}v{lmv}}}mlv{m}v{{v{35'0}v{nm}}}ll177{771}7{{7{35'0}1{1HH}}}W{{!{BS'O}Y{IHH}}}Hl{
{{35.03{,,,,, 113 {435.01.{,,.0 111 043501 B F o, hodondh,
{{{{,{35.0},{,,,,,}}},,,{{,{35.0},{,,,,,}}},,,{{,{35.0},{,,,,,}}},,,,,{,,,},{{,{35.0},{,,,,,}}},,,{{,{35.0},{,,,,,}}
}lH{{v{ss'o}l{wn}}}nm{m}v{{v{35'0}v{mll}}}nm{w}v{{l{35'0}v{nlH}}}w{{l{?’s'o}l{lml}}}m{{v{BS'O}
Y{ vvvvv }}},,,{{,{35.0},{,,,,,}}},,,{{,{35.0},{,,,,,}}},,},{ vvv }u{ ::::::::: }}v{{{{v{35
-0}:{1171:}}}m{{v{?’s-o}:{m::}}}m{{y{?’s-o}v{::m}}}mn{m}v{{v{35-0}:{m::}}}:::{{1{35-0}1{11m}}}w{{v{3
5'0}1{711H}}}Hm{lll}l{{v{35'0}l{vmv}}}m11{717}1{{1{35'0}7{171ll}}}m{{v{35'o}v{mll}}}nl{{v{35'o}v{mn}}}
,,,{{,{35.0},{,,,,,}}},,,{{,{35.0},{,,,,,}}},,},{ vvv }n{ ::::::::: }}}v{ ::::: }u{ vvvvvvvvvvv
,,,,,,,,,,,,,,,, B850, 00 {0485.03. .., 113 {435,010 30 L WLAB5.01 0 13 {
{1{35'0}v{llvvv}}}lvv{{v{ss'o}v{lHvv}}}lvvvl{lvv}l{{v{ss'o}v{vvm}}}vml{m}l{{v{?’s'o}l{llm}}}m{{l{ss-o}v{m
”}}}’”{{’{35'0}’{”"’}}}”’{{1{35'0}1{1’Y”}}}”’{{1{35'0}’{””’}}}”}Y{ YYY }ll{Yl
vvvvvvv }}v{{{{l{35'0}l{wll}}}vvl{{v{35'0}l{ﬂnl}}}vvv{{v{?’s'o}l{vml}}}lml{vvv}l{{v{35'0}v{lwv}}}vvv{{l{35'0
}‘{ 777 }}}’”{{’{35'0}’{’””}}}””’{”‘}7{{7{35'0}7{”‘”}}}"’”{”’}’{{’{35'0}7{1””}}}”’{{‘{35'0}’{1””}}}”‘{
{£35.05.4.,... 1 {{{35.01{.... 113 ALAB5.01 L BB Mo, bl 32
{{{{’{35'0}7{”"’}}}”’{{7{35'0}1{”1"}}}’”{{7{35'0}’{"”‘}}}”"’{”’}’{{’{35'0}’{””‘}}}7”{{7{35'0}7{1”“}}
}lH{{v{ss'o}l{wn}}}nm{m}v{{v{ss'o}v{mll}}}nm{w}v{{l{35'0}v{nlH}}}w{{l{?’s'o}l{lml}}}vvv{{v{35'0}
LB {03501, 13 {U85.01 4 B 1o o, b BLA{{{{35
'0}1{””’}}}'”{{’{35'0}’{””’}}}’”{{’{35'0}’{"”‘}}}”‘”{‘”}’{{7{35'0}’{“"’}}}"’{{7{35'0}1{”‘”}}}”’{{’{3
5'0}’{”’”}}}””’{"’}’{{’{35'0}’{””’}}}”"’{’”}’{{’{35'0}'{”"‘}}}7”{{’{35'0}7{”"‘}}}‘”{{’{35'0}'{”‘”}}}
w{0{85.01 4, 11 {38501 B Bl | SR 3 X I O PP

,,,,,,,,,,,,,,,, BEG bl > LOBItAdd
er_0</SixteenBitAdderLibrary.16BitAdder>

<RANDOM_LOGIC_SOURCES.0 NodeLayout="520.0,31.0" NodeAlignment="CW"
Value="{{,.{,}}},,">0_0</RANDOM_LOGIC_SOURCES.0>

<RANDOM_LOGIC_BUS_STRUCTURES.16TO1 NodeLayout="540.0,71.0"
NodeAlignment="NORMAL"
Value=",,{,, i1 mmmmmmmmm0ms01911s }">16TO1 0</RANDOM_LOGIC_BUS_STRUCTURES.16TO
1>

<RANDOM_LOGIC_BUS_STRUCTURES.16TO1 NodeLayout="548.0,296.0"
NodeAlignment="NORMAL"
ValUE=", {,11rrsssesssssssmsssssssissiosss }">16TO1_1</RANDOM_LOGIC_BUS_STRUCTURES.16TO
1>

<RANDOM_LOGIC_BUS_STRUCTURES.16TO1 NodeLayout="147.0,523.0"
NodeAlignment="CW"

Value=",.{,...rsiimsmsmmmmssmsm }">16TO1_2</RANDOM_LOGIC_BUS_STRUCTURES.16TO
1>
</Components>
- <Connections>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""

From="0_0.RANDOM_LOGIC_SOURCES.Abstract_Generator.Out"
To="16BitAdder_0.CarryIN" Value=","
RelationLayout="">Line_16</RANDOM_LOGIC_ELEMENTS.Line>

153

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_0"
To="16TO1_0.0" Value=","
RelationLayout="">Line_0</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_1"
To="16TO1_0.1" Value=","
RelationLayout="">Line_1</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_2"
To="16TO1_0.2" Value=","
RelationLayout="">Line_2</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_3"
To="16TO1_0.3" Value=","
RelationLayout="">Line_3</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_4"
To="16TO1_0.4" Value=""
RelationLayout="">Line_4</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_5"
To="16TO1_0.5" Value=""
RelationLayout="">Line_5</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_6"
To="16TO1_0.6" Value=""
RelationLayout="">Line_6</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_7"
To="16TO1_0.7" Value=""
RelationLayout="">Line_7</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""From="16BitAdder_0.X_8"
To="16TO1_0.8" Value=","
RelationLayout="">Line_8</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16TO1_0.9"
To="16BitAdder_0.X_9" Value=","
RelationLayout="">Line_9</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_10"
To="16TO1_0.10" Value=","
RelationLayout="">Line_10</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_11"
To="16TO1_0.11" Value=","
RelationLayout="">Line_11</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_12"
To="16TO1_0.12" Value=","
RelationLayout="">Line_12</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_13"
To="16TO1_0.13" Value=","
RelationLayout="">Line_13</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_14"
To="16TO1_0.14" Value=","
RelationLayout="">Line_14</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.X_15"
To="16TO1_0.15" Value=""
RelationLayout="">Line_15</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_0"
To="16TO1_1.0" Value=""
RelationLayout="">Line_17</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_1"
To="16TO1_1.1" Value=","
RelationLayout="">Line_18</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_2"
To="16TO1_1.2" Value=""
RelationLayout="">Line_19</RANDOM_LOGIC_ELEMENTS.Line>

154

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_3"
To="16TO1_1.3" Value=","
RelationLayout="">Line_20</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_4"
To="16TO1_1.4" Value=","
RelationLayout="">Line_21</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""From="16BitAdder_0.Y_5"
To="16TO1_1.5" Value=","
RelationLayout="">Line_22</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_6"
To="16TO1_1.6" Value=","
RelationLayout="">Line_23</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_7"
To="16TO1_1.7" Value=""
RelationLayout="">Line_24</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation=""From="16BitAdder_0.Y_8"
To="16TO1_1.8" Value=""
RelationLayout="">Line_25</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_9"
To="16TO1_1.9" Value=""
RelationLayout="">Line_26</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_10"
To="16TO1_1.10" Value=""
RelationLayout="">Line_27</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_11"
To="16TO1_1.11" Value=""
RelationLayout="">Line_28</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_12"
To="16TO1_1.12" Value=","
RelationLayout="547.0,436.0">Line_29</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_13"
To="16TO1_1.13" Value=""
RelationLayout="">Line_30</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_14"
To="16TO1_1.14" Value=","
RelationLayout="">Line_31</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Y_15"
To="16TO1_1.15" Value=","
RelationLayout="">Line_32</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_0"
To="16TO1_2.0" Value=""
RelationLayout="">Line_33</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_1"
To="16TO1_2.1" Value=","
RelationLayout="">Line_34</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_2"
To="16TO1_2.2" Value=""
RelationLayout="">Line_35</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_3"
To="16TO1_2.3" Value=""
RelationLayout="">Line_36</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_4"
To="16TO1_2.4" Value=","
RelationLayout="">Line_37</RANDOM_LOGIC_ELEMENTS.Line>
<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_5"
To="16TO1_2.5" Value=""
RelationLayout="">Line_38</RANDOM_LOGIC_ELEMENTS.Line>

155

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_6"
To="16TO1_2.6" Value=""
RelationLayout="">Line_39</RANDOM_LOGIC_ELEMENTS.Line>

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_7"
To="16TO1_2.7" Value=""
RelationLayout="">Line_40</RANDOM_LOGIC_ELEMENTS.Line>

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_8"
To="16TO1_2.8" Value=""
RelationLayout="">Line_41</RANDOM_LOGIC_ELEMENTS.Line>

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_9"
To="16TO1_2.9" Value=""
RelationLayout="">Line_42</RANDOM_LOGIC_ELEMENTS.Line>

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_10"
To="16TO1_2.10" Value=","
RelationLayout="">Line_43</RANDOM_LOGIC_ELEMENTS.Line>

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_11"
To="16TO1_2.11" Value=","
RelationLayout="">Line_44</RANDOM_LOGIC_ELEMENTS.Line>

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_12"
To="16TO1_2.12" Value=","
RelationLayout="">Line_45</RANDOM_LOGIC_ELEMENTS.Line>

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_13"
To="16TO1_2.13" Value=","
RelationLayout="">Line_46</RANDOM_LOGIC_ELEMENTS.Line>

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_14"
To="16TO1_2.14" Value=","
RelationLayout="">Line_47</RANDOM_LOGIC_ELEMENTS.Line>

<RANDOM_LOGIC_ELEMENTS.Line Explanation="" From="16BitAdder_0.Sum_15"
To="16TO1_2.15" Value=""
RelationLayout="">Line_48</RANDOM_LOGIC_ELEMENTS.Line>

</Connections>
- <Interface>

<PortMaps>16BitAdder_0.CarryOUT=0OverFlow, 16 TO1_2.Bus=Sum, 16 TO1_0.Bus=X,

16TO1_1.Bus=Y</PortMaps>
</Interface>
</ScenarioType>
</LIBRARY>

Section 2: Network

a) Queue Elements

- <LIBRARY LibraryName="QUEUE" Explanation="Example Queue">
- <DataType TypeName="Distribution" Explanation="defines parameters of a distribution"
NodeLayout="258.0,426.0,true">
<String Explanation="Type of Distribution" Required="True"
Range=""Normal’,"Poisson’,'Binomial’,"Pareto™ Value=""Normal"'>Type</String>
- <Case Conditions="Type="Normal*">
<Float Explanation="Mean paramater for normal distribution” Unit="" Decimal="5"
Required="True" Value="150.0">Mean</Float>
<Float Explanation="Variance of Normal distribution” Unit="" Decimal="5" Required="True"
Value="15.0">Variance</Float>
</Case>
- <Case Conditions="Type="Binomial"">

156

<Float Explanation="Probability" Unit="" Decimal="5" Required="True"
Range="0.0..1.0">P</Float>
<Long Explanation="Number of trials" Unit="" Required="True">n</Long>
</Case>
- <Case Conditions="Type="Poisson"">
<Float Explanation="The average number of occurrences of the Poisson process" Unit=
Decimal="5" Required="True">a</Float>
</Case>
- <Case Conditions="Type="'Pareto"">
<Float Explanation="Shape parameter for Pareto distribution” Unit="" Decimal="5"
Required="True">s</Float>
<Float Explanation="Location parameter for Pareto distribution" Unit="" Decimal="5"
Required="True">k</Float>
</Case>
</DataType>
- <DataType TypeName="PacketCell" Explanation="Defines a cell of a packet with name size and
explanation." NodeLayout="9.0,420.0,true">
<Int Explanation="Size of cell inside the packet definition" Unit="bits" Required="True">Size</Int>
<String Explanation="Name of the cell">Name</String>
<String Explanation="An explanation about the properties of cell">Explanation</String>
</DataType>
- <DataType TypeName="RoutingAdresses" Explanation="" NodeLayout="524.0,592.0,true">
<Int Explanation="" Unit="" Required="True">LinkNo</Int>
<Int Explanation="" Unit="" Required="True">Address</Int>
</DataType>
<PortType TypeName="InputPort" Explanation="Input Port Definition"
NodelLayout="355.0,185.0,true" Symbol="Line" />
<PortType TypeName="Output" Explanation="Output Port Definition" NodeLayout="191.0,187.0,true"
Symbol="Triangle" />
<PortType TypeName="DuplexPort" Explanation="" NodeLayout="535.0,195.0,true" Symbol="Square"
/>
<RelationType TypeName="Link" Explanation="Link without Delay" HeadSymbol="Arrow"
TailSymbol="None" LineSymbol="Plain" FromPortType="QUEUE.Output"
ToPortType="QUEUE.InputPort" FromPortRelationLayout="-44.0,9.0,true"
ToPortRelationLayout="18.0,9.0,true" NodeLayout="288.0,101.0,true" />
- <RelationType TypeName="DelayedLink" Explanation="Link with Delay" HeadSymbol="Arrow"
TailSymbol="None" LineSymbol="Double" FromPortType="QUEUE.Output"
ToPortType="QUEUE.InputPort" FromPortRelationLayout="222.0,100.0,-64.0,9.0,true"
ToPortRelationLayout="395.0,93.0,37.0,9.0,true" NodeLayout="264.0,25.0,true">
<Float Explanation="Delay time in seconds" Unit="seconds" Decimal="5"
Required="True">Delay</Float>
</RelationType>
- <RelationType TypeName="DuplexPaidLink" Explanation="A link with a cost value for usage"
HeadSymbol="None" TailSymbol="None" LineSymbol="DashDot"
FromPortType="QUEUE.DuplexPort" ToPortType="QUEUE.DuplexPort"
FromPortRelationLayout="523.0,144.0,-51.0,29.0,true"
ToPortRelationLayout="627.0,144.0,32.0,30.0,true" NodeLayout="507.0,16.0,true">
<Float Explanation="The time for a single bit to be transfered betweeb two connection points,
depending on the type and length of link" Unit="seconds" Decimal="4" Required="True"
Range="0.0..6000.0">Propagation</Float>
<Float Explanation="The money paid for each byte of data transfer" Unit="cents per byte"
Decimal="5" Range="0.0..1000.0">CostPerTransfer</Float>
<Float Explanation="Money paid monthly for a link independent from the usage" Unit="Dollars"
Decimal="2" Required="True" Range="0.0..1000000.0">MonthlyCost</Float>
<Float Explanation="Transfer rate of the link" Unit="bits/sec" Required="True">Rate</Float>
</RelationType>
- <ComponentType TypeName="Source" Explanation="Produces" PictureFile=
NodeLayout="95.0,301.0,true,true">
- <Attributes>

157

<QUEUE.PacketCell Explanation="Defines bit level attributes of the packet to be produced”
Required="True" RelationLayout="-62.844696044921875,-10.0,23.0,-
10.0,true,true">PacketType[1,500]</QUEUE.PacketCell>
<QUEUE.Distribution Explanation="Production Rate" Required="True" RelationLayout="-
40.0,0.0,-9.0,-28.0,true,true”
Value="{'"Normal‘,{150.0,15.0},,,}"">Rate</QUEUE.Distribution>
<QUEUE.Distribution Explanation="" Required="True" RelationLayout="170.0,539.0,-122.0,18.0,-
11.0,-16.0,true,true”
Value="{"'Normal',{150.0,15.0},,,}">AddressDistribution</QUEUE.Distribution>
<Int Explanation="" Unit="" Required="True">NumberOfAddresses</Int>
</Attributes>
- <Ports>
<QUEUE.Output Explanation="Output port of source" From="n" To="n" Left="-2" Top="-2"
RelationLayout="-42.0,15.0,true" Value=",">Out</QUEUE.Output>
</Ports>
</ComponentType>
- <ComponentType TypeName="Queue" Explanation="Services" PictureFile=""
NodeLayout="271.0,303.0,true,true">
- <Attributes>
<QUEUE.Distribution Explanation="Service rate for process" Required="True" RelationLayout="-
74.0,-14.0,13.0,-11.0,true,true"
Value=",{"Normal’ {150.0,15.0},,,}"">ServiceRate</QUEUE.Distribution>
<Long Explanation="Number of bits the queue can hold" Unit="# bytes"
Required="True">QueueSize</Long>
</Attributes>
- <Ports>
<QUEUE.InputPort Explanation="Input port of queue" From="n" To="n" Left="-1" Top="-1"
RelationLayout="-39.0,14.0,true" Value=",">In</QUEUE.InputPort>
<QUEUE.Output Explanation="Output port of queue" From="n" To="n" Left="-2" Top="-2"
RelationLayout="14.0,15.0,true" Value=",">0Out</QUEUE.Output>
</Ports>
</ComponentType>
- <ComponentType TypeName="Sink" Explanation="" PictureFile=
NodelLayout="404.3414306640625,309.0939025878906,true,true">
<Attributes />
- <Ports>
<QUEUE.InputPort Explanation="Input Port of Sink" From="n" To="n" Left="-1" Top="-1"
RelationLayout="7.0,20.0,true" Value=",">In</QUEUE.InputPort>
</Ports>
</ComponentType>
- <ComponentType TypeName="transceiver" Explanation="" PictureFile=""
NodeLayout="539.0,318.0,true,true">
<Attributes />
- <Ports>
<QUEUE.InputPort Explanation="" From="n" To="n" Left="-1" Top="-1"
RelationLayout="19.0,11.0,true" Value=",">In</QUEUE.InputPort>
<QUEUE.Output Explanation="" From="n" To="n" Left="-2" Top="-2"
RelationLayout="16.0,0.0,true" Value=",">Out</QUEUE.Output>
<QUEUE.DuplexPort Explanation="" From="0..1" To="0..1" Left="-3" Top="-3"
RelationLayout="23.0,21.0,true" Value=",">Transfer</QUEUE.DuplexPort>
</Ports>
</ComponentType>
- <ComponentType TypeName="Router" Explanation="" PictureFile=
NodelLayout="393.0,487.0,true,true">
<Extension ExtendedTypeName="QUEUE.Queue" RelationLayout="" />
- <Attributes>
<QUEUE.RoutingAdresses Explanation="" Required="True" RelationLayout="-130.0,-15.0,4.0,-
27.0,true,true">RoutingAssociations[0,15]</QUEUE.RoutingAdresses>

158

<String Explanation="" Required="True"
Range=""EIGRP','RGRP",'RIP"">RoutingAlgorithm</String>
</Attributes>
<Ports />
</ComponentType>
</LIBRARY>

b) Node Model

- <LIBRARY LibraryName="NodeModel" Explanation="" Uses="QUEUE">
- <ScenarioType TypeName="Node" Explanation="" Component="True" PictureFile="">
- <Components>
<QUEUE.Source NodeLayout="39.0,59.0" NodeAlignment="NORMAL"
Value="{{{,{1024,'Data’,'gchfsh'}}},{'"Normal’,{150.0,15.0},,,},.{'"Normal*,{150.0,15.0},,,},3},
{,}'>Source_0</QUEUE.Source>
<QUEUE.Queue NodeLayout="190.0,58.0" NodeAlignment="NORMAL"
Value=",{,{"'Normal',{150.0,15.0},,,},1500} {,,,}">Queue_0</QUEUE.Queue>
<QUEUE.Sink NodeLayout="518.0,57.0" NodeAlignment="NORMAL"
Value=",,{,}'>Sink_0</QUEUE.Sink>
<QUEUE.transceiver NodeLayout="334.0,59.0" NodeAlignment="NORMAL"
Value=",{,,,,,}"">transceiver_0</QUEUE.transceiver>
</Components>
- <Connections>
<QUEUE.Link Explanation="Link without Delay" From="Source_0.Out" To="Queue_0.In"
Value="," RelationLayout="">Link_0</QUEUE.Link>
<QUEUE.Link Explanation="Link without Delay" From="Queue_0.Out" To="transceiver_0.In"
Value="," RelationLayout="">Link_1</QUEUE.Link>
<QUEUE.Link Explanation="Link without Delay" From="transceiver_0.Out" To="Sink_0.In"
Value="," RelationLayout="">Link_2</QUEUE.Link>
</Connections>
- <Interface>
<PortMaps>transceiver_0.Transfer=XMT</PortMaps>
</Interface>
</ScenarioType>
</LIBRARY>

c) Hub Model

- <LIBRARY LibraryName="HubLibrary" Explanation="" Uses="QUEUE">
- <ScenarioType TypeName="4Hub" Explanation="" Component="True" PictureFile="">
- <Components>
<QUEUE.Router NodeLayout="295.0,191.0" NodeAlignment="NORMAL"
Value="{{,{,{’'Normal’,{150.0,15.0},,,},1500},{,..}}}.{,'RIP'},">Router_0</QUEUE.Router>
<QUEUE.transceiver NodeLayout="89.0,114.0" NodeAlignment="NORMAL"
Value=",{,,,,,}"">transceiver_0</QUEUE.transceiver>
<QUEUE.transceiver NodeLayout="442.0,91.0" NodeAlignment="NORMAL"
Value=",,{,,,,,}"">transceiver_1</QUEUE.transceiver>
<QUEUE.transceiver NodeLayout="84.0,290.0" NodeAlignment="NORMAL"
Value=",{,,,,,}"">transceiver_2</QUEUE.transceiver>
<QUEUE.transceiver NodeLayout="453.0,308.0" NodeAlignment="NORMAL"
Value=",{,,,,,}"">transceiver_3</QUEUE.transceiver>
</Components>
- <Connections>
<QUEUE.Link Explanation="Link without Delay" From="transceiver_0.Out"
To="Router_0.QUEUE.Queue.In" Value="," RelationLayout="">Link_0</QUEUE.Link>

159

<QUEUE.Link Explanation="Link without Delay" From="transceiver_2.0Out"
To="Router_0.QUEUE.Queue.In" Value="," RelationLayout="">Link_1</QUEUE.Link>

<QUEUE.Link Explanation="Link without Delay" From="Router_0.QUEUE.Queue.Out"
To="transceiver_1.In" Value="," RelationLayout="">Link_2</QUEUE.Link>

<QUEUE.Link Explanation="Link without Delay" From="Router_0.QUEUE.Queue.Out"
To="transceiver_3.In" Value="," RelationLayout="">Link_3</QUEUE.Link>

<QUEUE.Link Explanation="Link without Delay" From="transceiver_1.0ut"
To="Router_0.QUEUE.Queue.In" Value=","
RelationLayout="588.0,56.0,265.0,57.0">Link_4</QUEUE.Link>

<QUEUE.Link Explanation="Link without Delay" From="transceiver_3.0Out"
To="Router_0.QUEUE.Queue.In" Value=","
RelationLayout="590.0,420.0,281.0,420.0">Link_5</QUEUE.Link>

<QUEUE.Link Explanation="Link without Delay" From="Router_0.QUEUE.Queue.Out"
To="transceiver_0.In" Value=""
RelationLayout="394.0,89.0,35.0,89.0">Link_6</QUEUE.Link>

<QUEUE.Link Explanation="Link without Delay" From="Router_0.QUEUE.Queue.Out"
To="transceiver_2.In" Value=""
RelationLayout="395.0,398.0,43.0,398.0">Link_7</QUEUE.Link>

</Connections>
- <Interface>

<PortMaps>transceiver_0.Transfer=0, transceiver_1.Transfer=1, transceiver_2.Transfer=2,

transceiver_3.Transfer=3</PortMaps>
</Interface>
</ScenarioType>
</LIBRARY>

d) Network of Air Force Bases

- <LIBRARY LibraryName="NetworkLibrary" Explanation="" Uses="QUEUE,NodeModel,HubLibrary">
- <ScenarioType TypeName="4Bases" Explanation="" PictureFile="">
- <Components>
<HubLibrary.4Hub NodeLayout="225.0,13.0" NodeAlignment="REVERSE"
Value:"{{{{’{'{lNormall1{150'0115'0}1”}’1500}’{”7}}}1{1'RIPl}"’Y{””Y}Y”{””’}Y”{””’}’”{”Hl}}l{lllll
g tmnty >4HUb_0</HubLibrary.4Hub>
<NodeModel.Node NodeLayout="74.0,168.0" NodeAlignment="NORMAL"
Value="{{,{{{,{1024,'Data’,'gchfsh'}}}, {'"Normal',{150.0,15.0},,.},,{'Normal‘ {150.0,15.0},,,},3
1 {{'"Normal',{150.0,15.0},,,},1500}{,,.},..{.},.» {0 1140 10 {33 " >Chyenne</NodeModel.No
de>
<NodeModel.Node NodelLayout="179.0,168.0" NodeAlignment="NORMAL"
Value="{{,{{{,{1024,'Data’,'gchfsh'}}}, {'"Normal*,{150.0,15.0},,.},,{"'Normal’ {150.0,15.0},,,},3
1 {{'Normal',{150.0,15.0},,,},1500},{,,.}..,.{.} s {ovn 1100 10 {1 " >Hickam</NodeModel.No
de>
<NodeModel.Node NodelLayout="389.0,167.0" NodeAlignment="NORMAL"
Value="{{,{{{,{1024,'Data’,'gchfsh'}}},{'"Normal’,{150.0,15.0},,.},,{'Normal*,{150.0,15.0},,,},3
LG {'Normal’,{150.0,15.0},,,},1500},{,,.}...{.} oo lonnnn 1 1 6o 1o 03" >Ramstein</NodeModel.N
ode>
<NodeModel.Node NodelLayout="283.0,168.0" NodeAlignment="NORMAL"
Value="{{,{{{,{1024,'Data’,'gchfsh'}}}, {'"Normal*,{150.0,15.0},,.},,{"'Normal’ {150.0,15.0},,,},3
L3 {.{'"Normal',{150.0,15.0},,,},1500},{,..},..{.} .l b Lo 1o L 1 >WPAFB</NodeModel.No
de>
</Components>
- <Connections>
<QUEUE.DuplexPaidLink Explanation="A link with a cost value for usage"
From="Chyenne. XMT" To="4Hub_0.0" Value=",{,,,}"
RelationLayout="">DuplexPaidLink_0</QUEUE.DuplexPaidLink>

160

<QUEUE.DuplexPaidLink Explanation="A link with a cost value for usage"
From="Hickam. XMT" To="4Hub_0.1" Value="/{,, }"
RelationLayout="">DuplexPaidLink_1</QUEUE.DuplexPaidLink>

<QUEUE.DuplexPaidLink Explanation="A link with a cost value for usage"
From="WPAFB.XMT" To="4Hub_0.2" Value="J{,,,}"
RelationLayout="">DuplexPaidLink_2</QUEUE.DuplexPaidLink>

<QUEUE.DuplexPaidLink Explanation="A link with a cost value for usage"
From="Ramstein. XMT" To="4Hub_0.3" Value="{,,,}"
RelationLayout="">DuplexPaidLink_3</QUEUE.DuplexPaidLink>

</Connections>
</ScenarioType>
</LIBRARY>

Section 3: Sensitivity Analysis

a) Decision Tree Elements

- <LIBRARY LibraryName="DECISION_ANALYSIS" Explanation="This library implements decision
tree">
<PortType TypeName="ParentsPort" Explanation="Connects this objective to its parent objective"
NodeLayout="101.0,170.0,true" Symbol="Triangle" />
<PortType TypeName="ChildrenPort" Explanation="Connects the objective to its sub-objectives"
NodeLayout="280.0,167.0,true" Symbol="Square" />
<RelationType TypeName="Connection" Explanation="Connects objectives to its sub objectives"
HeadSymbol="None" TailSymbol="None" LineSymbol="Double"
FromPortType="DECISION_ANALYSIS.ParentsPort"
ToPortType="DECISION_ANALYSIS.ChildrenPort" FromPortRelationLayout="-50.0,14.0,true"
ToPortRelationLayout="21.0,16.0,true" NodeLayout="197.0,70.0,true" />
- <ComponentType TypeName="Objective_Node" Explanation="" PictureFile=""
NodelLayout="183.0,280.0,true,true">
- <Attributes>
<String Explanation="This field is used as title in the MsExcel Worksheet if applicable”
Required="True">Caption</String>
<String Explanation="This field contains detailed information about the
objective">Explanation</String>
<Float Explanation="Percentage value between 0 and 100" Unit="Percentagevalue"
Range="0.0..100.0">LocalWeight</Float>
</Attributes>
- <Ports>
<DECISION_ANALYSIS.ChildrenPort Explanation="" From="0" To="n" Left="-4" Top="-4"
RelationLayout="3.0,19.0,true" Value=",">SubObj</DECISION_ANALYSIS.ChildrenPort>
<DECISION_ANALYSIS.ParentsPort Explanation="" From="1" To="0" Left="-3" Top="-3"
RelationLayout="-64.0,20.0,true"
Value=",">SuperObj</DECISION_ANALYSIS.ParentsPort>
</Ports>
</ComponentType>
</LIBRARY>

b) Best Car Sample

- <LIBRARY LibraryName="BestCarLibrary" Explanation="" Uses="DECISION_ANALYSIS">
- <ScenarioType TypeName="BestCar" Explanation="" PictureFile="">
- <Components>

161

<DECISION_ANALYSIS.Objective_Node NodeLayout="405.0,63.0"
NodeAlignment="NORMAL"
Value="{'BestCar’,,100.0},{,,,}"">Objective_Node_0</DECISION_ANALYSIS.Objective_No
de>
<DECISION_ANALYSIS.Objective_Node NodeLayout="139.5,228.0"
NodeAlignment="NORMAL"
Value="{"Power’,,25.0}{,,,}">Objective_Node_1</DECISION_ANALYSIS.Objective_Node>
<DECISION_ANALYSIS.Objective_Node NodeLayout="464.0,221.5"
NodeAlignment="NORMAL"
Value="{"Estetic',,25.0}.{,,,}">Objective_Node_2</DECISION_ANALYSIS.Objective_Node
>
<DECISION_ANALYSIS.Objective_Node NodeLayout="897.0,230.5"
NodeAlignment="NORMAL"
Value="{"Price’,,50.0},{,,,}">Objective_Node_3</DECISION_ANALYSIS.Objective_Node>
<DECISION_ANALYSIS.Objective_Node NodeLayout="34.0,384.0"
NodeAlignment="NORMAL"
Value="{"HorsePower",,50.0},{,,.}">Objective_Node_4</DECISION_ANALYSIS.Objective_
Node>
<DECISION_ANALYSIS.Objective_Node NodeLayout="120.0,484.0"
NodeAlignment="NORMAL"
Value="{'GasMilage',,25.0},{,,,}'">Objective_Node_5</DECISION_ANALYSIS.Objective_N
ode>
<DECISION_ANALYSIS.Objective_Node NodeLayout="218.0,385.5"
NodeAlignment="NORMAL"
Value="{"Transmission",,25.0},{,,.}'">Objective_Node_6</DECISION_ANALY SIS.Objective
Node>
<DECISION_ANALYSIS.Objective_Node NodeLayout="390.0,372.0"
NodeAlignment="NORMAL"
Value="{"Color,,40.0},{,,,}">Objective_Node_7</DECISION_ANALYSIS.Objective_Node>
<DECISION_ANALYSIS.Objective_Node NodeLayout="555.0,370.5"
NodeAlignment="NORMAL"
Value="{"Style’,,60.0}.,{,,,}">Objective_Node_8</DECISION_ANALYSIS.Objective_Node>
<DECISION_ANALYSIS.Objective_Node NodeLayout="780.0,369.0"
NodeAlignment="NORMAL"
Value="{"Milage',,35.0},{,,,}">Objective_Node_9</DECISION_ANALYSIS.Objective_Node
>
<DECISION_ANALYSIS.Objective_Node NodeLayout="873.0,493.5"
NodeAlignment="NORMAL"
Value="{"Year",,30.0},{,,,}">Objective_Node_10</DECISION_ANALYSIS.Objective_Node>
<DECISION_ANALYSIS.Objective_Node NodeLayout="996.0,369.0"
NodeAlignment="NORMAL"
Value="{"Price’,,35.0}{,,,}"">Objective_Node_11</DECISION_ANALYSIS.Objective_Node>
</Components>
- <Connections>
<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_1.SuperObjective" To="Objective_Node_0.SubObjectives"
Value="," RelationLayout="">Connection_0</DECISION_ANALYSIS.Connection>
<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_2.SuperObjective" To="Objective_Node_0.SubObjectives"
Value="," RelationLayout="">Connection_1</DECISION_ANALYSIS.Connection>
<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_3.SuperObjective" To="Objective_Node_0.SubObjectives"
Value="," RelationLayout="">Connection_2</DECISION_ANALYSIS.Connection>
<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_4.SuperObjective" To="Objective_Node_1.SubObjectives"
Value="," RelationLayout="">Connection_3</DECISION_ANALYSIS.Connection>
<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_5.SuperObjective" To="Objective_Node_1.SubObjectives"
Value="," RelationLayout="">Connection_4</DECISION_ANALYSIS.Connection>

162

<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_6.SuperObjective" To="Objective_Node_1.SubObjectives"
Value="," RelationLayout="">Connection_5</DECISION_ANALY SIS.Connection>

<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_7.SuperObjective" To="Objective_Node_2.SubObjectives"
Value="," RelationLayout="">Connection_6</DECISION_ANALYSIS.Connection>

<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_8.SuperObjective" To="Objective_Node_2.SubObjectives"
Value="," RelationLayout="">Connection_7</DECISION_ANALYSIS.Connection>

<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_9.SuperObjective" To="Objective_Node_3.SubObjectives"
Value="," RelationLayout="">Connection_8</DECISION_ANALYSIS.Connection>

<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_10.SuperObjective" To="Objective_Node_3.SubObijectives"
Value="," RelationLayout="">Connection_9</DECISION_ANALYSIS.Connection>

<DECISION_ANALYSIS.Connection Explanation="Connects objectives to its sub objectives"
From="Objective_Node_11.SuperObjective" To="Objective_Node_3.SubObijectives"
Value="," RelationLayout="">Connection_10</DECISION_ANALYSIS.Connection>

</Connections>
</ScenarioType>
</LIBRARY>

Section 4: Mission Planning

a) Mission Elements

- <LIBRARY LibraryName="MilitaryLibrary" Explanation="Contains mission planing elements">
- <DataType TypeName="Log" Explanation="" NodeLayout="33.0,316.5,true">
<String Explanation="">TOT</String>
<String Explanation="">Action</String>

</DataType>

<PortType TypeName="PacketTarget" Explanation="" NodeLayout="226.0,463.0,true" Symbol="Line"
/>

<PortType TypeName="CommPort" Explanation="" NodeLayout="381.0,364.0,true" Symbol="None" />

<RelationType TypeName="PrimaryTarget" Explanation="" HeadSymbol="FilledTriangle"
TailSymbol="None" LineSymbol="Double" FromPortType="MilitaryLibrary.PacketTarget"
ToPortType="MilitaryLibrary.PacketTarget"
FromPortRelationLayout="215.0,588.0,106.0,52.0,true" ToPortRelationLayout="212.0,556.0,114.0,-
2.0,true" NodelLayout="52.0,552.0,true" />

<RelationType TypeName="SecondaryTarget" Explanation="" HeadSymbol="Triangle"
TailSymbol="None" LineSymbol="Plain" FromPortType="MilitaryLibrary.PacketTarget"
ToPortType="MilitaryLibrary.PacketTarget" FromPortRelationLayout="224.0,454.0,3.0,-
17.0,true” ToPortRelationLayout="210.0,510.0,0.0,20.0,true" NodeLayout="42.0,463.0,true" />

<RelationType TypeName="CommConnection" Explanation="" HeadSymbol="None"
TailSymbol="None" LineSymbol="DashDot" FromPortType="MilitaryLibrary.CommPort"
ToPortType="MilitaryLibrary.CommPort" FromPortRelationLayout="587.0,323.0,14.0,-17.0,true"
ToPortRelationLayout="586.0,429.0,17.0,16.0,true" NodeLayout="521.0,357.0,true" />

- <ComponentType TypeName="AbstractAircraft" Explanation="" Abstract="True" PictureFile=""
NodeLayout="230.0,229.0,true,true">
- <Attributes>
<MilitaryLibrary.Log Explanation="" RelationLayout="15.0,14.0,3.0,-
19.0,true,true">MissionLog[0,n]</MilitaryLibrary.Log>

163

<String Explanation="" Required="True" Range=""Search And Rescue',"Air Drop',"Air
Refuel’,'Patrol’,"Command
Center’,"Reconnaissance’,'SEAD','Target"">Mission Type</String>
<String Explanation="" Required="True">Load</String>
<Int Explanation="" Unit="" Required="True" Value="1">FormationSize</Int>
</Attributes>
- <Ports>
<MilitaryLibrary.PacketTarget Explanation="" From="2" To="0" Left="50" Top="10"
RelationLayout="20.0,-19.0,true" Value=",">Target</MilitaryLibrary.PacketTarget>
<MilitaryLibrary.CommPort Explanation="" From="n" To="n" Left="50" Top="60"
RelationLayout="-50.0,-1.0,true" Value=",">Comms</MilitaryLibrary.CommPort>
</Ports>
</ComponentType>
- <ComponentType TypeName="CN235" Explanation=""
PictureFile="D:\Hakan\Thesis\M'YDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\CN2
35.gif" NodeLayout="25.0,204.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractAircraft" RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="C130" Explanation=
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\C130
.gif" NodeLayout="471.0,44.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractAircraft" RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="Cougar" Explanation=
PictureFile="D:\Hakan\Thesis\M'YDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\Coug
er.gif" NodeLayout="358.0,22.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractAircraft" RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="Gulf" Explanation=
PictureFile="D:\Hakan\Thesis\M'YDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\Gulf.
gif" NodeLayout="12.0,132.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractAircraft" RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="KC130" Explanation=""
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\KC1
30.gif" NodeLayout="25.0,53.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractAircraft" RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="F4" Explanation=
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\F4.gi
" NodeLayout="132.0,23.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractAircraft" RelationLayout="" />
<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="F16" Explanation=
PictureFile="D:\Hakan\Thesis\M'YDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\F16.
gif" NodeLayout="242.0,15.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractAircraft" RelationLayout="" />

164

<Attributes />
<Ports />
</ComponentType>
- <ComponentType TypeName="CommunicationChannel" Explanation=""
PictureFile="D:\Hakan\Thesis\M'YDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\Com
mChannel.gif" NodeLayout="440.5,488.0,true,true">
- <Attributes>
<String Explanation="" Required="True">PrimaryFreq</String>
<String Explanation="" Required="True">SecondaryFreq</String>
<String Explanation="" Required="True">EmergencyFreq</String>
</Attributes>
- <Ports>
<MilitaryLibrary.CommPort Explanation="" From="n" To="n" Left="15" Top="15"
RelationLayout="-51.0,21.0,true" Value=",">Comm</MilitaryLibrary.CommPort>
</Ports>
</ComponentType>
- <ComponentType TypeName="AbstractTarget" Explanation="" Abstract="True" PictureFile=""
NodeLayout="193.0,656.0,true,true">
<Attributes />
- <Ports>
<MilitaryLibrary.PacketTarget Explanation="" From="0" To="n" Left="10" Top="10"
RelationLayout="3.0,19.0,true" Value=",">Target</MilitaryLibrary.PacketTarget>
</Ports>
</ComponentType>
- <ComponentType TypeName="GroundTarget" Explanation=
PictureFile="D:\Hakan\Thesis\MYDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\Grou
ndTarget.gif" NodeLayout="78.0,759.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractTarget" RelationLayout="" />
- <Attributes>
<String Explanation="" Required="True">Coordinates</String>
</Attributes>
<Ports />
</ComponentType>
- <ComponentType TypeName="SeaTarget" Explanation=
PictureFile="D:\Hakan\Thesis\M'YDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\SeaT
arget.gif” NodeLayout="32.0,677.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractTarget" RelationLayout="" />
- <Attributes>
<String Explanation="" Required="True">Coordinates</String>
</Attributes>
<Ports />
</ComponentType>
- <ComponentType TypeName="PatrolZone" Explanation=
PictureFile="D:\Hakan\Thesis\M'YDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\Patr
olZone.qgif" NodeLayout="231.0,781.0,true,true">
<Extension ExtendedTypeName="MilitaryLibrary.AbstractTarget" RelationLayout="" />
- <Attributes>
<String Explanation="">Coordinates[0,n]</String>
</Attributes>
<Ports />
</ComponentType>
- <ComponentType TypeName="Radar" Explanation=""
PictureFile="D:\Hakan\Thesis\M'YDOCS\Chapters\CaseStudies\MissionPlanning\PlanePics\rada
r.gif" NodeLayout="556.0,156.0,true,true">
<Attributes />
- <Ports>
<MilitaryLibrary.CommPort Explanation="" From="n" To="n" Left="10" Top="10"
RelationLayout="-23.0,-18.0,true" Value=",">Comm</MilitaryLibrary.CommPort>
</Ports>

165

</ComponentType>
</LIBRARY>

b) Sample Mission

- <LIBRARY LibraryName="MuissionLibrary" Explanation="" Uses="MilitaryLibrary">
- <ScenarioType TypeName="MissionImpossible" Explanation="" PictureFile="">
- <Components>

<MilitaryLibrary.Gulf NodeLayout="569.0,307.5" NodeAlignment="NORMAL"
Value="{{,{,"Command Center','Standart',1},{,,.}}},,">Gulf_0</MilitaryLibrary.Gulf>

<MilitaryLibrary.F16 NodeLayout="133.0,180.0" NodeAlignment="NORMAL"
Value="{{,{,'Target','’2xAim8",4},{,,.}}}.,">F16_0</MilitaryLibrary.F16>

<MilitaryLibrary.F4 NodelLayout="104.0,514.0" NodeAlignment="NORMAL"
Value="{{{,'Target','Std",4}.{,,.}}},,">F4_0</MilitaryLibrary.F4>

<MilitaryLibrary.GroundTarget NodeLayout="100.0,348.0" NodeAlignment="NORMAL"
Value="{{,.{,.}}}.{'4545N4545W"},">GroundTarget_0</MilitaryLibrary.GroundTarget>

<MilitaryLibrary.PatrolZone NodeLayout="744.0,161.5" NodeAlignment="NORMAL"
Value="{{,.{,.}}}.{{{'3545N2525E"} {"3600N2535E '},{"3400N2500E'}}},">Patrol Zone_0</Milit
aryLibrary.PatrolZone>

<MilitaryLibrary.SeaTarget NodeLayout="112.0,21.5" NodeAlignment="NORMAL"
Value="{{,.{,.}}}{'2525N5643E"},">SeaTarget_0</MilitaryLibrary.SeaTarget>

<MilitaryLibrary.SeaTarget NodeLayout="297.0,39.5" NodeAlignment="NORMAL"
Value="{{,.{ }}}{},">SeaTarget_1</MilitaryLibrary.SeaTarget>

<MilitaryLibrary.GroundTarget NodeLayout="17.0,425.0" NodeAlignment="NORMAL"
Value="{{,.{.}}}{},">GroundTarget_1</MilitaryLibrary.GroundTarget>

<MilitaryLibrary.CommunicationChannel NodeLayout="322.0,323.5" NodeAlignment="NORMAL"
Value=",{"121.5",'118.0",},{,}'">CommunicationChannel_0</MilitaryLibrary.CommunicationC
hannel>

<MilitaryLibrary.CN235 NodeLayout="448.0,144.5" NodeAlignment="NORMAL"
Value="{{,{,,'Standart’,1},{,,,}}},,">CN235_0</MilitaryLibrary.CN235>

<MilitaryLibrary.Radar NodeLayout="509.0,548.0" NodeAlignment="NORMAL"
Value=",,{,}">Radar_0</MilitaryLibrary.Radar>

</Components>
- <Connections>

<MilitaryLibrary.PrimaryTarget Explanation=
From="Gulf_0.MilitaryLibrary.AbstractAircraft. Target"
To="PatrolZone_0.MilitaryLibrary.AbstractTarget. Target" Value=","
RelationLayout="">PrimaryTarget_0</MilitaryLibrary.PrimaryTarget>

<MilitaryLibrary.PrimaryTarget Explanation=""
From="F16_0.MilitaryLibrary.AbstractAircraft. Target"
To="SeaTarget_0.MilitaryLibrary.AbstractTarget. Target" Value=","
RelationLayout="">PrimaryTarget_1</MilitaryLibrary.PrimaryTarget>

<MilitaryLibrary.PrimaryTarget Explanation=""
From="F4_0.MilitaryLibrary.AbstractAircraft. Target"
To="GroundTarget_0.MilitaryLibrary.AbstractTarget. Target" Value=","
RelationLayout="">PrimaryTarget_2</MilitaryLibrary.PrimaryTarget>

<MilitaryLibrary.SecondaryTarget Explanation=""
From="F16_0.MilitaryLibrary.AbstractAircraft. Target"
To="SeaTarget_l1.MilitaryLibrary.AbstractTarget. Target" Value=","
RelationLayout="">SecondaryTarget_0</MilitaryLibrary.SecondaryTarget>

<MilitaryLibrary.SecondaryTarget Explanation=""
From="F4_0.MilitaryLibrary.AbstractAircraft. Target"
To="GroundTarget_1.MilitaryLibrary.AbstractTarget. Target" Value=","
RelationLayout="">SecondaryTarget_1</MilitaryLibrary.SecondaryTarget>

<MilitaryLibrary.CommConnection Explanation=""
From="F16_0.MilitaryLibrary.AbstractAircraft. Comm"

166

To="CommunicationChannel_0.Comm" Value=","
RelationLayout="">CommConnection_0</MilitaryLibrary.CommConnection>

<MilitaryLibrary.CommConnection Explanation=""
From="Gulf_0.MilitaryLibrary.AbstractAircraft. Comm"
To="CommunicationChannel_0.Comm" Value=","
RelationLayout="605.0,394.0,560.0,407.0,496.0,400.0">CommConnection_1</MilitaryLibrary
.CommConnection>

<MilitaryLibrary.CommConnection Explanation=
From="F4_0.MilitaryLibrary.AbstractAircraft. Comm"
To="CommunicationChannel_0.Comm" Value=","
RelationLayout="231.0,625.0,303.0,627.0,331.0,586.0">CommConnection_2</MilitaryLibrary
.CommConnection>

<MilitaryLibrary.PrimaryTarget Explanation=
From="CN235_0.MilitaryLibrary.AbstractAircraft. Target"
To="PatrolZone_0.MilitaryLibrary.AbstractTarget. Target" Value=","
RelationLayout="638.0,65.5,690.0,55.5,727.5,91.5">PrimaryTarget_3</MilitaryLibrary.Prima
ryTarget>

<MilitaryLibrary.CommConnection Explanation=
From="CN235_0.MilitaryLibrary.AbstractAircraft. Comm"
To="CommunicationChannel_0.Comm" Value=","
RelationLayout="">CommConnection_3</MilitaryLibrary.CommConnection>

<MilitaryLibrary.CommConnection Explanation="" From="Radar_0.Comm"
To="CommunicationChannel_0.Comm" Value=","
RelationLayout="">CommConnection_4</MilitaryLibrary.CommConnection>

</Connections>
</ScenarioType>
</LIBRARY>

167

Vita

First Lieutenant Hakan Canli was born in April 1974 in lzmir, Turkey. He graduated
from Maltepe Military High School in 1992, and received his Bachelor of Science Degree in
Computer Engineering in 1996, from the Turkish Air Force Academy located in Istanbul. He
completed the pilot training course in March 1998. He began his military service career as a
CN-235 pilot at 2" Tactical Air Force, Diyarbakir, Turkey. In August 2000, he started at the
Graduate School of Engineering and Management at the Air Force Institute of Technology at
Wright-Patterson AFB, OH, to work toward a Masters of Science Degree in Computer
Engineering. He is a member of Tau Beta Pi and Eta Kappa Nu, the National Engineering

Honor Societies.

168

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE 3. DATES COVERED (From — To)
10-03-2002 Master’s Thesis Mar 2001 — Mar 2002
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A VISUAL META-LANGUAGE FOR GENERIC MODELING

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Canli, Hakan, First Lieutenant, TUAF

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER
Graduate School of Engineering and Management (AFIT/EN)

2950 P Street, Building 640 AFIT/GCE/ENG/02M-1
WPAFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S

Air Force Research Laboratory/SNZW AFMC ACRONYM(S)

Attn: Mike R. Foster

Bldg 620 S1D34, 2241 Avionics Circle AFRL/SNZW

WPAFB OH 45433-7303

Comm: (937) 656-4464 DSN: 986-4464 x 3002 11. SPONSOR/MONITOR’S
Email: mike.foster@wpafb.af.mil REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This research examines the usefulness of a visual meta-language (VLGM — Visual Language for Generic Modeling) developed for
the specification of components and relations in a modeling domain. The language is designed to allow software tools to interpret
specifications and automatically provide modeling environments.

VLGM makes use of the object-orientated software engineering methodology. It defines four types of special classes and three types
of relations between them. Data types and primitive types are allocated with several attributes to provide restrictions and enable consistency
checks over models.

As part of this research a software tool was designed. The tool provides a workspace for creating VLGM specifications. It interprets
VLGM designs and provides a generic modeling environment. An XML document format is used as a persistence mechanism to promote
reusability and sharing. Four case studies from different modeling domains are used to explore the applicability of the idea.

15. SUBJECT TERMS
VLGM, Visual Languages, Modeling, Object-Orientation, Simulation, UML, XML Document

16. SECURITY CLASSIFICATION 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF: ABSTRACT OF Major Karl S. Mathias
PAGES
uu 186
REPORT | ABSTRACT | c.THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
u u u (937) 255-6565, ext 4280

Standard Form 298 (Rev: 8-98)
Presaibed by ANS| Std Z39-18

